
SHARED MEMORY
MUTUAL EXCLUSION

Prof. Jennifer WelchCSCE 668

1

Shared Memory Model

¨ Processors communicate via a set of shared
variables, instead of passing messages.

¨ Each shared variable has a type, defining a set of
operations that can be performed atomically.

2

Shared Memory Model Example
3

p0 p1 p2

X Y

read write writeread

Mutual Exclusion (Mutex) Problem

¨ Each processor's code is divided into four sections:

¤ entry: synchronize with others to ensure mutually exclusive
access to the …

¤ critical: use some resource; when done, enter the…
¤ exit: clean up; when done, enter the…
¤ remainder: not interested in using the resource

4

entry

critical

exit

remainder

Read-Modify-Write Variables5

Test-and-Set Shared Variable

¨ A test-and-set variable V holds two values, 0 or 1,
and supports two (atomic) operations:
¤ test&set(V):

temp := V
V := 1
return temp

¤ reset(V):
V := 0

6

Mutex Algorithm Using Test&Set

¨ code for entry section:
repeat

t := test&set(V)
until (t = 0)
An alternative syntactic construction is:
wait until test&set(V) = 0

¨ code for exit section:
reset(V)

7

Read-Write Variables8

Read/Write Shared Variables
9

¨ In one atomic step a processor can
¤ read the variable or
¤ write the variable
¤ but not both!

Bakery Algorithm
10

¨ An algorithm using 2n shared read/write variables
¤ booleans Choosing[i] : initially false, written by pi

and read by others
¤ integers Number[i] : initially 0, written by pi and

read by others

Bakery Algorithm
11

Code for entry section:
Choosing[i] := true
Number[i] := max{Number[0], …, Number[n-1]} + 1
Choosing[i] := false
for j := 0 to n-1 (except i) do

wait until Choosing[j] = false
wait until Number[j] = 0 or
(Number[j],j) > (Number[i],i)

endfor

Code for exit section:
Number[i] := 0

Space Complexity of Bakery Algorithm
12

¨ Number of shared variables is 2n
¨ Choosing variables are boolean
¨ Number variables are unbounded
¨ Is it possible for an algorithm to use less shared

space?

2-Processor ME Algorithm
13

Uses 3 binary shared read/write variables:
¨ W[0] : initially 0, written by p0 and read by p1

¨ W[1] : initially 0, written by p1 and read by p0

¨ Priority : initially 0, written and read by both

2-Processor Mutex Algorithm
14

¨ Start with a bounded algorithm for 2 processors
with ND, then extend to NL, then extend to n
processors.

¨ Some ideas used in 2-processor algorithm:
¤ each processor has a shared boolean W[i]

indicating if it wants the CS
¤ p0 always has priority over p1 ; asymmetric code

2-Processor Mutex Algorithm
15

Code for p0 's entry section:
1 .

2 .

3 W[0] := 1

4 .

5 .

6 wait until W[1] = 0

Code for p0 's exit section:
7 .

8 W[0] := 0

2-Processor Mutex Algorithm
16

Code for p1 's entry section:
1 W[1] := 0

2 wait until W[0] = 0

3 W[1] := 1

4 .

5 if (W[0] = 1) then goto Line 1

6 .

Code for p1 's exit section:
7 .

8 W[1] := 0

Discussion of 2-Processor Algorithm
17

¨ Satisfies mutual exclusion: processors use W
variables to make sure of this

¨ Does not deadlock, but may be unfair to one
processor

¨ Fix by having the processors alternate having the
priority:
¤ shared variable Priority, read and written by both

2-Processor Mutex Algorithm
18

Code for entry section:
1 W[i] := 0

2 wait until W[1-i] = 0 or Priority = i

3 W[i] := 1

4 if (Priority = 1-i) then

5 if (W[1-i] = 1) then goto Line 1

6 else wait until (W[1-i] = 0)

Code for exit section:
7 Priority := 1-i

8 W[i] := 0

