
CS 425 / ECE 428
Distributed Systems

Fall 2015
Indranil Gupta (Indy)

Oct 1, 2015
Lecture 12: Mutual Exclusion

All slides © IG

Central Solution

• Elect a central master (or leader)

• Master keeps
• A queue of waiting requests from processes who wish

to access the CS
• A special token which allows its holder to access CS

• Actions of any process in group:
• enter()

• Send a request to master
• Wait for token from master

• exit()
• Send back token to master

Central Solution

• Master Actions:
• On receiving a request from process Pi

if (master has token)
Send token to Pi

else
Add Pi to queue

• On receiving a token from process Pi
if (queue is not empty)

Dequeue head of queue (say Pj), send that
process the token

else
Retain token

Analysis of Central Algorithm

• Safety – at most one process in CS
• Exactly one token

• Liveness – every request for CS granted eventually
• With N processes in system, queue has at most

N processes
• If each process exits CS eventually and no

failures, liveness guaranteed
• FIFO Ordering is guaranteed, in order of requests

received at master

Analyzing Performance

Efficient mutual exclusion algorithms use fewer messages,
and make processes wait for shorter durations to access
resources. Three metrics:
• Overhead: the total number of messages sent in each

enter and exit operation.
• Client delay: the delay incurred by a process at each

enter and exit operation (when no other process is in, or
waiting)

(We will prefer mostly the enter operation.)
• Synchronization delay: the time interval between one

process exiting the critical section and the next process
entering it (when there is only one process waiting)

Analysis of Central Algorithm

• Bandwidth: the total number of messages sent in each enter
and exit operation.
• 2 messages for enter
• 1 message for exit

• Client delay: the delay incurred by a process at each enter
and exit operation (when no other process is in, or waiting)

• 2 message latencies (request + grant)

• Synchronization delay: the time interval between one
process exiting the critical section and the next process
entering it (when there is only one process waiting)

• 2 message latencies (release + grant)

But…

• The master is the performance bottleneck
and SPoF (single point of failure)

Ring-based Mutual Exclusion

Currently holds token,
can access CS

Token:

N80

N32

N5

N12

N6

N3

Ring-based Mutual Exclusion

Cannot access CS anymore

Here’s the token!

Token:

N80

N32

N5

N12

N6

N3

Ring-based Mutual Exclusion

Token:

N80

N32

N5

N12

N6

N3

Currently holds token,
can access CS

Ring-based Mutual Exclusion

• N Processes organized in a virtual ring
• Each process can send message to its successor

in ring
• Exactly 1 token
• enter()

• Wait until you get token
• exit() // already have token

• Pass on token to ring successor
• If receive token, and not currently in enter(),

just pass on token to ring successor

Analysis of Ring-based Mutual Exclusion

• Safety
• Exactly one token

• Liveness
• Token eventually loops around ring and

reaches requesting process (no failures)
• Bandwidth

• Per enter(), 1 message by requesting process
but up to N messages throughout system

• 1 message sent per exit()

Analysis of Ring-Based Mutual Exclusion (2)

• Client delay: 0 to N message transmissions after
entering enter()
• Best case: already have token
• Worst case: just sent token to neighbor

• Synchronization delay between one process’ exit()
from the CS and the next process’ enter():
• Between 1 and (N-1) message transmissions.
• Best case: process in enter() is successor of

process in exit()
• Worst case: process in enter() is predecessor

of process in exit()

Ricart-Agrawala’s Algorithm

• Classical algorithm from 1981

• No token

Key Idea: Ricart-Agrawala Algorithm

• enter() at process Pi
• multicast a request to all processes

• Request: <T, Pi>, where T = current
Lamport timestamp at Pi

• Wait until all other processes have responded
positively to request

• <T, Pi> is used lexicographically: Pi in request
<T, Pi> is used to break ties (since Lamport
timestamps are not unique for concurrent events)

Messages in RA Algorithm

• enter() at process Pi
• set state to Wanted
• multicast “Request” <Ti, Pi> to all processes, where Ti =

current Lamport timestamp at Pi
• wait until all processes send back “Reply”
• change state to Held and enter the CS

• On receipt of a Request <Tj, Pj> at Pi (i ≠ j):
• if (state = Held) or (state = Wanted & (Ti, i) < (Tj, j))

// lexicographic ordering in (Tj, Pj)
add request to local queue (of waiting requests)

else send “Reply” to Pj

• exit() at process Pi
• change state to Released and “Reply” to all queued requests.

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Request message
<T, Pi> = <102, 32>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Reply messages

N32 state: Held.
Can now access CS

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Request message
<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12> (since > (110, 80))

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12>

Reply messages

Request message
<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.
Multicast Reply to
<115, 12>, <110, 80>

N12 state:
Wanted
(waiting for
N80’s
reply)

N80 state:
Held. Can now access CS.
Queue requests: <115, 12>

Reply messages

Request message
<115, 12>

Request message
<110, 80>

Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access

to CS
• If they did, then both would have sent Reply to each

other
• Thus, (Ti, i) < (Tj, j) and (Tj, j) < (Ti, i), which are

together not possible
• What if (Ti, i) < (Tj, j) and Pi replied to Pj’s request

before it created its own request?
• Then it seems like both Pi and Pj would

approve each others’ requests
• But then, causality and Lamport timestamps at

Pi implies that Ti > Tj , which is a
contradiction

• So this situation cannot arise

Analysis: Ricart-Agrawala’s Algorithm (2)

• Liveness
• Worst-case: wait for all other (N-1)

processes to send Reply

Performance: Ricart-Agrawala’s Algorithm

• Overhead: 2*(N-1) messages per enter()
operation
• N-1 unicasts for the multicast request + N-1 replies
• N messages if the underlying network supports

multicast (1 multicast + N-1 unicast replies)
• N-1 unicast messages per exit operation

• 1 multicast if the underlying network supports
multicast

Maekawa’s Algorithm: Key Idea

• Ricart-Agrawala requires replies from all processes
in group

• Instead, get replies from only some processes in
group

• But ensure that only one process is given access to
CS (Critical Section) at any given time

Maekawa’s Voting Sets

• Each process Pi is associated with a voting set Vi (of
processes)

• Each process belongs to its own voting set

• The intersection of any two voting sets must be non-empty

• Same concept as Quorums

• Each voting set is of size K

• Each process belongs to M other voting sets

• Maekawa showed that K=M= order of ÖN feasible

• One way of doing this is to put N processes in a ÖN by ÖN matrix
and for each Pi, its voting set Vi = row containing Pi + column
containing Pi. Size of voting set = 2*ÖN-1

Example: Voting Sets with N=4

p1 p2

p3 p4

P1’s voting set = V1
V2

V3 V4

p1 p2
p3 p4

Actions

• state = Released, voted = false
• enter() at process Pi:

• state = Wanted
• Multicast Request message to all processes in Vi
• Wait for Reply (vote) messages from all processes

in Vi (including vote from self)
• state = Held

• exit() at process Pi:
• state = Released
• Multicast Release to all processes in Vi

Actions (2)

• When Pi receives a Request from Pj:
if (state == Held OR voted = true)

queue Request
else

send Reply to Pj and set voted = true

• When Pi receives a Release from Pj:
if (queue empty)

voted = false
else

dequeue head of queue, say Pk
Send Reply only to Pk
voted = true

Safety

• When a process Pi receives replies from all its
voting set Vi members, no other process Pj
could have received replies from all its voting
set members Vj
• Vi and Vj intersect in at least one process

say Pk
• But Pk sends only one Reply (vote) at a

time, so it could not have voted for both Pi
and Pj

Liveness

• A process needs to wait for at most (N-1) other
processes to finish CS

• But does not guarantee liveness
• Since can have a deadlock
• Example: all 4 processes need access

• P1 is waiting for P3
• P3 is waiting for P4
• P4 is waiting for P2
• P2 is waiting for P1
• No progress in the system!

• There are deadlock-free versions

p1 p2

p3 p4

P1’s voting set = V1
V2

V3 V4

Performance

• Overhead
• 2ÖN messages per enter()
• ÖN messages per exit()
• Better than Ricart and Agrawala’s (2*(N-

1) and N-1 messages)
• ÖN quite small. N ~ 1 million => ÖN = 1K

Summary

• Mutual exclusion important problem in cloud
computing systems

• Classical algorithms
• Central
• Ring-based
• Ricart-Agrawala
• Maekawa

