
Computer Science 425
Distributed Systems

CS 425 / ECE 428

Multicast

ã 2013, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Communication Modes in Distributed System
v Unicast

q Messages are sent from exactly one process to one process.
q Best effort: if a message is delivered it would be intact; no

reliability guarantees.
q Reliable: guarantees delivery of messages.

v Broadcast
q Messages are sent from exactly one process to all processes

on the network.
v Multicast

q Messages broadcast within a group of processes.
q A multicast message is sent from any one process to the group

of processes on the network.
q Reliable multicast can be implemented “above” (i.e., “using”) a

reliable unicast.
qThis lecture!

What’re we designing in this class

Application
(at process p)

MULTICAST PROTOCOL

send
multicast

Incoming
messages

deliver
multicast
(upcall)

One process p

Basic Multicast (B-multicast)
• Let’s assume the all processes know the group

membership
• A straightforward way to implement B-multicast is

to use a reliable one-to-one send (unicast)
operation:

– B-multicast(group g, message m):
for each process p in g, send (p,m).

– receive(m): B-deliver(m) at p.

• A “correct” process= a “non-faulty” process
• A basic multicast primitive guarantees a correct

process will eventually deliver the message, as
long as the sender (multicasting process) does
not crash.

– Can we provide reliability even when the sender crashes (after
it has sent the multicast)?

What about Multicast Ordering?

• FIFO ordering: If a correct process issues
multicast(g,m) and then multicast(g,m’), then every
correct process that delivers m’ will have already
delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’)
then any correct process that delivers m’ will have
already delivered m.

• Total ordering: If a correct process delivers
message m before m’ (independent of the senders),
then any other correct process that delivers m’ will
have already delivered m.

Total, FIFO and Causal Ordering

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

•Totally ordered messages
T1 and T2.
•FIFO-related messages F1

and F2.
•Causally related messages
C1 and C3

• Causal ordering implies
FIFO ordering (why?)
• Total ordering does not
imply causal ordering.
• Causal ordering does not
imply total ordering.
• Hybrid mode: causal-total
ordering, FIFO-total
ordering.

Display From Newsgroup

Newsgroup: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

What is the most appropriate ordering for this application?
(a) FIFO (b) causal (c) total

v Look at messages from each
process in the order they were sent:
v Each process keeps a sequence

number for each other process (vector)
v When a message is received,

as expected (next sequence), accept

higher than expected, buffer in a queue
lower than expected, reject

Providing Ordering Guarantees (FIFO)

If
Message#
is

Implementing FIFO Ordering

• Sp
g: the number of messages p has sent to g.

• Rq
g: the sequence number of the latest group-g message

that p has delivered from q (maintained for all q at p)
• For p to FO-multicast m to g

– p increments Sp
g by 1.

– p “piggy-backs” the value Sp
g onto the message.

– p B-multicasts m to g.
• At process p, Upon receipt of m from q with sequence

number S:
– p checks whether S= Rq

g+1. If so, p FO-delivers m and increments Rq
g

– If S > Rq
g+1, p places the message in the hold-back queue until the

intervening messages have been delivered and S= Rq
g+1.

– If S < Rq
g+1, reject m

Hold-back Queue for Arrived Multicast
Messages

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

Example: FIFO Multicast

P1

P2

P3

0 0 0

Physical Time

1 0 0 2 0 0

1 0 0 2 0 0 2 1 0

2 1 0

0 0 0

0 0 0

2 1 0

0 0 0 1 0 0 2 1 0

11 1 2 2 1

1

Reject:
1 < 1 + 1

Accept
1 = 0 + 1

Accept:
2 = 1 + 1

2 0 0

Buffer 2
> 0 + 1

Accept:
1 = 0 + 1

2 0 0

Accept
Buffer 2
= 1 + 1

Reject: 1
< 1 + 1

Accept 1
= 0 + 1

Sequence Vector0 0 0

(do NOT confuse with vector timestamps)
“Accept” = Deliver

Total Ordering Using a Sequencer
Sequencer = Leader process

Causal Ordering using vector timestamps

The number of group-g messages
from process j that have been seen at
process i so far

Example: Causal Ordering Multicast

P1

P2

P3

Physical Time

(1,1,0)

Reject:

Accept

0,0,0

0,0,0

0,0,0

1,0,0 1,1,0

1,0,0

Buffer,
missing

P1(1)

1,1,0

1,1,0

1,1,0

Accept:

1,0,0

Accept
Buffered
message

1,1,0

(1,0,0)

(1,0,0)

(1,1,0) (1,1,0)

Accept

Reliable Multicast

• Integrity: A correct (i.e., non-faulty) process p
delivers a message m at most once.

• Validity: If a correct process multicasts (sends)
message m, then it will eventually deliver m itself.

– Guarantees liveness to the sender.

• Agreement: If some one correct process delivers
message m, then all other correct processes in
group(m) will eventually deliver m.

– Property of “all or nothing.”
– Validity and agreement together ensure overall liveness: if

some correct process multicasts a message m, then, all correct
processes deliver m too.

Reliable R-Multicast Algorithm R-multicast

B-multicast

reliable unicast

“USES”

“USES”

Reliable Multicast Algorithm (R-multicast)

Integrity

Agreement

if some correct process B-multicasts a message m, then,
all correct processes R-deliver m too. If no correct process
B-multicasts m, then no correct processes R-deliver m.

Integrity, Validity

Summary

Multicast is operation of sending one message to
multiple processes in a given group

• Reliable multicast algorithm built using unicast
• Ordering – FIFO, total, causal

