Computer Science 425
Distributed Systems

CS 425/ ECE 428

Multicast

© 2013, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Communication Modes in Distributed System

** Unicast
0 Messages are sent from exactly one process to one process.

(1 Best effort: if a message is delivered it would be intact; no
reliability guarantees.

O Reliable: guarantees delivery of messages.

** Broadcast

[Messages are sent from exactly one process to all processes
on the network.

¢ Multicast
(] Messages broadcast within a group of processes.

(J A multicast message is sent from any one process to the group
of processes on the network.

(] Reliable multicast can be implemented “above” (i.e., “using”) a
reliable unicast.

This lecture!

What’re we designing in this class|

Application
(at process p)

One process p ——

send + deliver
muliicast ' multicast
(upcall)

MULTICAST PROTOCOL

Incoming
messages

Basic Multicast (B-multicast)l

 Let’s assume the all processes know the group
membership

» A straightforward way to implement B-multicast is
to use a reliable one-to-one send (unicast)
operation:

— B-multicast(group g, message m):
for each process p in g, send (p,m).
— receive(m): B-deliver(m) at p.

* A “correct” process= a “non-faulty” process

« A basic multicast primitive guarantees a correct
process will eventually deliver the message, as
long as the sender (multicasting process) does
not crash.

— Can we provide reliability even when the sender crashes (after
it has sent the multicast)?

What about Multicast Ordering? |

* FIFO ordering: If a correct process issues
multicast(g,m) and then multicast(g,m’), then every
correct process that delivers m’ will have already
delivered m.

« Causal ordering: If multicast(g,m) = multicast(g,m’)
then any correct process that delivers m” will have
already delivered m.

« Total ordering: If a correct process delivers
message m before m’ (independent of the senders),
then any other correct process that delivers m” will
have already delivered m.

Total, FIFO and Causal Ordering|

*Totally ordered messages
T,and T,.

*FIFO-related messages F,
and F,.

*Causally related messages
C,and C;

» Causal ordering implies
FIFO ordering (why?)

« Total ordering does not
imply causal ordering.

» Causal ordering does not
imply total ordering.

» Hybrid mode: causal-total
ordering, FIFO-total
ordering.

T4

Display From Newsgroup|

Newsgroup: os.interesting
Item |From Subject
23 A.Hanlon Mach
24 G.Joseph Microkernels
25 A.Hanlon Re: Microkernels
26 T.L’Heureux RPC performance
27 M.Walker Re: Mach
end

What is the most appropriate ordering for this application?
(a) FIFO (b) causal (c) total

Providing Ordering Guarantees (FIFO)

If
Message# <
is

*** Look at messages from each
process Iin the order they were sent:

> Each process keeps a sequence
number for each other process (vector)

* When a message is received,

as expected (next sequence), accept

higher than expected, buffer in a queue

lower than expected, reject
\

Implementing FIFO Ordering|

» SP,: the number of messages p has sent to g.

. R‘JI the sequence number of the latest group-g message
that p has delivered from g (maintained for all g at p)

 For pto FO-multicast mto g
— pincrements SP by 1.
— p “piggy-backs” the value S*,onto the message.
— p B-multicasts m to g.

« At process p, Upon receipt of m from q with sequence
number S:
— p checks whether S= R +1. If so, p FO-delivers m and increments R9

— IfS> Rq +1, p places the message in the hold-back queue until the
lntervenmg messages have been delivered and S= R9+1.

— If S < R,+1, reject m

g

Hold-back Queue for Arrived Multicast
Messages

Message
processing

IAdeliver

Hold-back
Delivery queue

queue
=
N .
When delivery

Incoming
messages

EX a m p I e: F I F O M u’ ti caSt (do NOT confuse with vector timestamps)

“Accept” = Deliver

P1

P2

000

0[0[0

0/0/0

Physical Time
> Reject:
1<1+1

1[o[0] __ [2[0[0 5\ceept 2[1]0
AR 7//1 /

oG ST 12110
Accept 1

=0+1
o[olo] _[3ola[[2[1]0
= 0b
2|0 Accept:
1=0+1
Buffer 2
Accept
>0+1 Buffer 2
=1+1

Sequence Vector

Total Ordering Using a Sequencer|

. Sequencer = Leader process
1. Algorithm for group member p

On initialization: Iy =0;

To TO-multicast message m to group g
B-multicast(g U { sequencer(g)}, <m, i>);

On B-deliver(<m, i>) with g = group(m)
Place <m, i> in hold-back queue;

On B-deliver(m,,,,, = <‘order”, i, S>) with g = group(m,,4.,)
wait until <m, i> in hold-back queue and § = r .
TO-deliver m; // (after deleting it from the hold-back queue)
r,=38+1;
g b

2. Algorithm for sequencer of g
On initialization: Sq =0;

On B-deliver(<m, l>) with g = group(m)
B-multicast(g, <“order”, i, Sq >);

=5 +1;
Sg g

Causal Ordering using vector timestamps|

Algorithm for group member p; (i = 1,2..., N)

On initialization The number of group-g messages

8r 1< T _ from process j that have been seen at
Vi[]] '_0(] = 1,2..,N); process i so far

To CO-multicast message m to group g
Vil = Vil + 1
B- multlcast(g, < Vg m>);

On B- delzver(< Vg m>) from P with g = group(m)
place <7<, m> n hold back queue;
wait until VELT = VAL + Land VELRT S VEL] (K # j);
CO-deliver m // after removing it from the hold-back queue
HNERSHVIESE

Example: Causal Ordering Multicast

Buffered
message

Buffer,
missing
P1(1)

Y

Physical Time

Reliable Multicast|

* Integrity: A correct (i.e., non-faulty) process p
delivers a message m at most once.

« Validity: If a correct process multicasts (sends)
message m, then it will eventually deliver m itself.
— Guarantees liveness to the sender.

« Agreement: If some one correct process delivers
message m, then all other correct processes in
group(m) will eventually deliver m.

— Property of “all or nothing.”

— Validity and agreement together ensure overall liveness: if
some correct process multicasts a message m, then, all correct
processes deliver m too.

Reliable R-Multicast Algorithm | Amticast

Y “USES”

B-multicast ,

On initialization | y“USES’
) reliable unicast
Received := { };

For process p to R-multicast message m to group g
B-multicast(g, m); // p € g 1s mcluded as a destination

On B-deliver(m) at process q with g = group(m)
if (m & Received)
then
Received ;= Received U {m};
if (q # p) then B-multicast(g, m); end if
R-deliver m;

end if

Reliable Multicast Algorithm (R-multicast)

On initialization
Received = { };

For process p to R-multicast message m to group g
B-multicast(g, m); // p € g 1s mcluded as a destination

On B-deliver(m) at process q with g = group(m)
if (m & Received) Integrity

then
Received := Received \U {m};
if (q # p) then B-multicast(g, m); end if Agreement
R-deliver m; Integrity, validity

end if if some correct process B-multicasts a message m, then,

all correct processes R-deliver m too. If no correct process
B-multicasts m, then no correct processes R-deliver m.

Summary)

Multicast is operation of sending one message to
multiple processes in a given group

* Reliable multicast algorithm built using unicast
* Ordering — FIFO, total, causal

