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Communication Modes in Distributed System
v Unicast

q Messages are sent from exactly one process to one process.
q Best effort: if a message is delivered it would be intact; no 

reliability guarantees.
q Reliable: guarantees delivery of messages.

v Broadcast
q Messages are sent from exactly one process to all processes 

on the network. 
v Multicast

q Messages broadcast within a group of processes.
q A multicast message is sent from any one process to the group 

of processes on the network.
q Reliable multicast can be implemented “above” (i.e., “using”) a 

reliable unicast. 
qThis lecture!
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Basic Multicast (B-multicast)
• Let’s assume the all processes know the group 

membership
• A straightforward way to implement B-multicast is 

to use a reliable one-to-one send (unicast) 
operation:

– B-multicast(group g, message m):
for each process p in g, send (p,m).

– receive(m): B-deliver(m) at p.

• A “correct” process= a “non-faulty” process
• A basic multicast primitive guarantees a correct 

process will eventually deliver the message, as 
long as the sender (multicasting process) does 
not crash.

– Can we provide reliability even when the sender crashes (after 
it has sent the multicast)?



What about Multicast Ordering?

• FIFO ordering: If a correct process issues 
multicast(g,m) and then multicast(g,m’), then every 
correct process that delivers m’ will have already 
delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’)
then any correct process that delivers m’ will have 
already delivered m.

• Total ordering: If a correct process delivers 
message m before m’ (independent of the senders), 
then any other correct process that delivers m’ will 
have already delivered m.



Total, FIFO and Causal Ordering
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•Totally ordered messages 
T1 and T2.
•FIFO-related messages F1

and F2.
•Causally related messages 
C1 and C3

• Causal ordering implies 
FIFO ordering (why?)
• Total ordering does not 
imply causal ordering. 
• Causal ordering does not 
imply total ordering.
• Hybrid mode: causal-total 
ordering, FIFO-total 
ordering.



Display From Newsgroup

Newsgroup: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

What is the most appropriate ordering for this application?
(a) FIFO (b) causal (c) total



v Look at messages from each 
process in the order they were sent:
v Each process keeps a sequence 

number for each other process (vector)
v When a message is received,

as expected (next sequence), accept

higher than expected, buffer in a queue 
lower than expected, reject

Providing Ordering Guarantees (FIFO) 
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Implementing FIFO Ordering

• Sp
g: the number of messages p has sent to g.

• Rq
g: the sequence number of the latest group-g message 

that p has delivered from q (maintained for all q at p)
• For p to FO-multicast m to g

– p increments Sp
g by 1.

– p “piggy-backs” the value Sp
g onto the message.

– p B-multicasts m to g.
• At process p, Upon receipt of m from q with sequence 

number S:
– p checks whether S= Rq

g+1. If so, p FO-delivers m and increments Rq
g

– If S > Rq
g+1, p places the message in the hold-back queue until the 

intervening messages have been delivered and S= Rq
g+1.

– If S < Rq
g+1, reject m 



Hold-back Queue for Arrived Multicast 
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Example: FIFO Multicast 
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Total Ordering Using a Sequencer
Sequencer = Leader process



Causal Ordering using vector timestamps

The number of group-g messages
from process j that have been seen at
process i so far



Example: Causal Ordering Multicast 
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Reliable Multicast

• Integrity: A correct (i.e., non-faulty) process p
delivers a message m at most once.

• Validity: If a correct process multicasts (sends) 
message m, then it will eventually deliver m itself.

– Guarantees liveness to the sender.

• Agreement: If some one correct process delivers 
message m, then all other correct processes in 
group(m) will eventually deliver m.

– Property of “all or nothing.”
– Validity and agreement together ensure overall liveness: if 

some correct process multicasts a message m, then, all correct 
processes deliver m too.



Reliable R-Multicast Algorithm R-multicast
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Reliable Multicast Algorithm (R-multicast)

Integrity

Agreement

if some correct process B-multicasts a message m, then, 
all correct processes R-deliver m too. If no correct process
B-multicasts m, then no correct processes R-deliver m.

Integrity, Validity



Summary

Multicast is operation of sending one message to 
multiple processes in a given group

• Reliable multicast algorithm built using unicast
• Ordering – FIFO, total, causal


