
Linearizability	for	concurrent	objects:	The	definition	of	linearizability	for	arbitrary	concurrent	objects	
extends	the	notion	of	linearizabiilty	we	have	discussed	for	shared	read/write	registers.		
	
We	assume	that	each	object	has	a	sequential	specification,	which	specifies	the	expected	behavior	if	
operations	are	performed	sequentially	(i.e.,	no	overlapping	operations).	
	
For	instance,	a	concurrent	queue’s	sequential	specification	will	be	as	follows:	
	

o q.dequeue	(or	q.deq,	for	short)	is	dequeue	operation	performed	on	queue	q.	
	
q.dequeue()	operation	performed	on	an	empty	queue	q	returns	null.	
	
q.dequeue()	performed	on	a	non-empty	queue	returns	the	item	at	the	head	of	the	
queue	(i.e.,	the	first	item	in	the	queue),	and	removes	that	item	from	the	queue.	
	
In	drawing	execution	timelines,	for	brevity,	we	may	denote	q.dequeue()	operation	that	
returns	item	x	as	q.dequeue(x)	or	q.deq(x).	
	

o q.enqueue(x)	(or	q.enq(x),	for	short)	operation	on	queue	q	adds	item	x	at	the	tail	of	the	
queue.		

	
In	an	execution,	we	may	assume	that	a	concurrent	object	is	initialized	suitably.	For	instance,	we	may	
assume	that	the	queue	is	initialized	as	empty;	alternatively,	we	may	assume	that	the	queue	is	initialized	
to	contain	some	items,	as	desired.	This	is	analogous	to	assuming	that	a	read/write	register	is	initialized	
to,	say,	1.	
	
An	execution	is	linearizable	if	the	following	statement	is	true.	
	

There	exists	a	permutation	of	all	the	operations	in	the	execution	such	that	the	following	two	
conditions	hold:	

	
• The	permutation	respects	real-time	order	of	the	operations	(and	hence	also	respects	the	

program	order	of	each	process).	Recall	that	each	process	performs	its	operations	
sequentially,	but	operations	performed	by	different	processes	may	overlap	in	time.	
	

• If	we	consider	the	operations	on	any	single	object	in	their	order	in	the	above	permutation,	
then	the	responses	of	these	operations	are	consistent	with	the	object’s	sequential	
specification	(i.e.,	the	responses	of	these	operations	on	a	single	object	are	identical	to	the	
corresponding	responses	when	the	operations	are	performed	sequentially	on	that	object	in	
their	order	in	the	above	permutation).	

	
The	lecture	on	this	topic	will	consider	some	example	executions.	Please	watch	the	lecture	video	for	this	
discussion.	
	
Intuitively	speaking,	in	a	linearizable	execution,	each	operation	can	be	viewed	as	``taking	effect’’	at	an	
instant	of	time	between	its	invocation	and	its	response.		


