
CS 425 / ECE 428
Distributed Systems

Fall 2015
Indranil Gupta (Indy)
Peer-to-peer Systems

All slides © IG

Napster Structure

S
S

S

P

P

P
P

P

Client machines
(“Peers”)

napster.com
Servers

Store their own
files

Store a directory, i.e.,
filenames with peer pointers

Filename Info about

PennyLane.mp3 Beatles, @
128.84.92.23:1006

…..

P

Napster Search

Client machines
(“Peers”)

napster.com
Servers

Store their own
files

Store peer pointers
for all files

2. All servers search their lists (ternary tree algorithm)

5. download from best host

4. ping candidates3. Response

1. QueryS
S

S

P

P

P
P

P

P

Gnutella

P

P

P

P

P
P

Servents (“Peers”)

P

Connected in an overlay graph
(== each link is an implicit Internet path)

Store their own
files

Also store
“peer pointers”

Gnutella Search

P

P

P

P

P
P

P
Who has PennyLane.mp3?

Query’s flooded out, ttl-restricted, forwarded only once

TTL=2

Gnutella Search

P

P

P

P

P
P

P
Who has PennyLane.mp3?

Successful results QueryHit’s routed on reverse path

Chord

• Developers: I. Stoica, D. Karger, F. Kaashoek, H.
Balakrishnan, R. Morris, Berkeley and MIT

• Intelligent choice of neighbors to reduce latency and message
cost of routing (lookups/inserts)

• Uses Consistent Hashing on node’s (peer’s) address
• SHA-1(ip_address,port) à160 bit string

• Truncated to m bits

• Called peer id (number between 0 and)

• Not unique but id conflicts very unlikely

• Can then map peers to one of logical points on a circle

12 -m

m2

Ring of peers

N80

N112

N96

N16
0Say m=7

N32

N45

6 nodes

Peer pointers (1): successors

N80

0Say m=7

N32

N45

N112

N96

N16

(similarly predecessors)

Peer pointers (2): finger tables

What about the files?

• Filenames also mapped using same consistent hash function
• SHA-1(filename) à160 bit string (key)

• File is stored at first peer with id greater than or equal to its
key (mod)

• File cnn.com/index.html that maps to key K42 is stored at first peer

with id greater than 42
• Note that we are considering a different file-sharing

application here : cooperative web caching

• The same discussion applies to any other file sharing
application, including that of mp3 files.

• Consistent Hashing => with K keys and N peers, each peer stores
O(K/N) keys. (i.e., < c.K/N, for some constant c)

2m

Mapping Files

N80

0Say m=7

N32

N45
File with key K42
stored here

N112

N96

N16

Search

N80

0Say m=7

N32

N45
File cnn.com/index.html with
key K42 stored here

Who has cnn.com/index.html?
(hashes to K42)

N112

N96

N16

Search

N80

0

Say m=7

N32

N45
File cnn.com/index.html with
key K42 stored here

At node n, send query for key k to largest successor/finger entry <= k
if none exist, send query to successor(n)

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

At or to the anti-clockwise of k
(it wraps around the ring)

Search

N80

0

Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

At node n, send query for key k to largest successor/finger entry <= k
if none exist, send query to successor(n)

All “arrows” are RPCs
(remote procedure calls)

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

Analysis

Search takes O(log(N)) time
Proof
• (intuition): at each step, distance between query and

peer-with-file reduces by a factor of at least 2

• (intuition): after log(N) forwardings, distance to key
is at most

• Number of node identifiers in a range of
is O(log(N)) with high probability (why? SHA-1! and
“Balls and Bins”)
So using successors in that range will be ok, using
another O(log(N)) hops

Next hop

Key

Here

2m / 2log(N) = 2m / N

Analysis (contd.)

• O(log(N)) search time holds for file
insertions too (in general for routing to
any key)
• “Routing” can thus be used as a building

block for
• All operations: insert, lookup, delete

• O(log(N)) time true only if finger and
successor entries correct

• When might these entries be wrong?
• When you have failures

Rest of the slides are for recommended reading

Search under peer failures

N80

0Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

X
X

X

Lookup fails
(N16 does not know N45)

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

Search under peer failures

N80

0Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

X

One solution: maintain r multiple successor entries
In case of failure, use successor entries

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

Search under peer failures

• Choosing r=2log(N) suffices to maintain lookup
correctness w.h.p.(i.e., ring connected)
• Say 50% of nodes fail
• Pr(at given node, at least one successor alive)=

• Pr(above is true at all alive nodes)=
2

log2 11)
2
1(1

N
N -=-

1)11(2
1

2/
2 »=-

-
NN e

N

Search under peer failures (2)

N80

0Say m=7

N32

N45
File cnn.com/index.html with
key K42 stored here

X
X

Lookup fails
(N45 is dead)N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

Search under peer failures (2)

N80

0Say m=7

N32

N45
File cnn.com/index.html with
key K42 stored here

X

One solution: replicate file/key at r successors and predecessors

N112

N96

N16

K42 replicated

K42 replicated

Who has cnn.com/index.html?
(hashes to K42)

Need to deal with dynamic changes

ü Peers fail

• New peers join

• Peers leave
• P2P systems have a high rate of churn (node join, leave and failure)

• 25% per hour in Overnet (eDonkey)

• 100% per hour in Gnutella

• Lower in managed clusters

• Common feature in all distributed systems, including wide-area (e.g.,
PlanetLab), clusters (e.g., Emulab), clouds (e.g., AWS), etc.

So, all the time, need to:

à Need to update successors and fingers, and copy keys

New peers joining

N80

0Say m=7

N32

N45

N112

N96

N16

N40

Introducer directs N40 to N45 (and N32)
N32 updates successor to N40
N40 initializes successor to N45, and inits fingers from it
N40 periodically talks to neighbors to update finger table

Stabilization
Protocol
(followed by
all nodes)

New peers joining (2)

N80

0Say m=7

N32

N45

N112

N96

N16

N40

N40 may need to copy some files/keys from N45
(files with fileid between 32 and 40)

K34,K38

New peers joining (3)

• A new peer affects O(log(N)) other finger
entries in the system, on average [Why?]

• Number of messages per peer join=
O(log(N)*log(N))

• Similar set of operations for dealing with
peers leaving
• For dealing with failures, also need failure

detectors (you’ve seen them!)

Stabilization Protocol

• Concurrent peer joins, leaves, failures might cause
loopiness of pointers, and failure of lookups
• Chord peers periodically run a stabilization algorithm

that checks and updates pointers and keys
• Ensures non-loopiness of fingers, eventual success of

lookups and O(log(N)) lookups w.h.p.
• Each stabilization round at a peer involves a constant

number of messages
• Strong stability takes stabilization rounds
• For more see [TechReport on Chord webpage]

)(2NO

