CS 425 / ECE 428 Distributed Systems Fall 2015

Indranil Gupta (Indy)

Peer-to-peer Systems

Napster Structure

Store a directory, i.e., filenames with peer pointers

Filename	Info about
PennyLane.mp3	Beatles, @ 128.84.92.23:1006

Napster Search

2. All servers search their lists (ternary tree algorithm)

Gnutella

Connected in an **overlay** graph
(== each link is an implicit Internet path)

Gnutella Search

Gnutella Search

Chord

- Developers: I. Stoica, D. Karger, F. Kaashoek, H. Balakrishnan, R. Morris, Berkeley and MIT
- Intelligent choice of neighbors to reduce latency and message cost of routing (lookups/inserts)
- Uses Consistent Hashing on node's (peer's) address
 - SHA-1(ip_address,port) \rightarrow 160 bit string
 - Truncated to *m* bits
 - Called peer *id* (number between 0 and $2^m 1$)
 - Not unique but id conflicts very unlikely
 - Can then map peers to one of 2^m logical points on a circle

Ring of peers

Peer pointers (1): successors

Peer pointers (2): finger tables

What about the files?

- Filenames also mapped using same consistent hash function
 - SHA-1(filename) \rightarrow 160 bit string (key)
 - File is stored at first peer with id greater than or equal to its key (mod 2^m)
- File cnn.com/index.html that maps to key K42 is stored at first peer with id greater than 42
 - Note that we are considering a different file-sharing application here : *cooperative web caching*
 - The same discussion applies to any other file sharing application, including that of mp3 files.
- Consistent Hashing => with K keys and N peers, each peer stores O(K/N) keys. (i.e., < c.K/N, for some constant c)

Mapping Files

Search

Search

Search

Analysis

Search takes O(log(N)) time

Proof

• (intuition): at each step, distance between query and peer-with-file reduces by a factor of at least 2

Here

Key

Next hop

• Number of node identifiers in a range of is O(log(N)) with high probability (why? SHA-1! and "Balls and Bins")

So using successors in that range will be ok, using another O(log(N)) hops

Analysis (contd.)

- O(log(N)) search time holds for file insertions too (in general for *routing to any key*)
 - "Routing" can thus be used as a building block for
 - All operations: insert, lookup, delete
- O(log(N)) time true only if finger and successor entries correct
- When might these entries be wrong?
 - When you have failures

Rest of the slides are for recommended reading

Search under peer failures

Search under peer failures

Search under peer failures

- Choosing r=2log(N) suffices to maintain *lookup* correctness w.h.p.(i.e., ring connected)
 - Say 50% of nodes fail
 - Pr(at given node, at least one successor alive)=

$$1 - \left(\frac{1}{2}\right)^{2\log N} = 1 - \frac{1}{N^2}$$

• Pr(above is true at all alive nodes)=

$$(1 - \frac{1}{N^2})^{N/2} = e^{-\frac{1}{2N}} \approx 1$$

Search under peer failures (2)

Search under peer failures (2)

Need to deal with dynamic changes

- ✓ Peers fail
- New peers join
- Peers leave
 - P2P systems have a high rate of *churn* (node join, leave and failure)
 - 25% per hour in Overnet (eDonkey)
 - 100% per hour in Gnutella
 - Lower in managed clusters
 - Common feature in all distributed systems, including wide-area (e.g., PlanetLab), clusters (e.g., Emulab), clouds (e.g., AWS), etc.

So, all the time, need to:

→ Need to update *successors* and *fingers*, and copy keys

New peers joining

New peers joining (2)

N40 may need to copy some files/keys from N45 (files with fileid between 32 and 40)

New peers joining (3)

- A new peer affects O(log(N)) other finger entries in the system, on average [Why?]
- Number of messages per peer join= O(log(N)*log(N))
- Similar set of operations for dealing with peers leaving
 - For dealing with failures, also need *failure* detectors (you've seen them!)

Stabilization Protocol

- Concurrent peer joins, leaves, failures might cause loopiness of pointers, and failure of lookups
 - Chord peers periodically run a *stabilization* algorithm that checks and updates pointers and keys
 - Ensures *non-loopiness* of fingers, eventual success of lookups and O(log(N)) lookups w.h.p.
 - Each stabilization round at a peer involves a constant number of messages
 - Strong stability takes $O(N^2)$ stabilization rounds
 - For more see [TechReport on Chord webpage]