
Computer Science 425
Distributed Systems

CS 425 / ECE 428

Consensus

What is Consensus?

• N processes
• Each process p has

– input variable xp : initially either 0 or 1
– output variable yp : initially b (b=undecided) – can be

changed only once

• Consensus problem: design a protocol so that
either

1. all non-faulty processes set their output variables to 0
2. Or non-faulty all processes set their output variables to 1
3. There is at least one initial state that leads to each outcomes

1 and 2 above
4. (There might be other conditions too, but we’ll consider the

above weaker version of the problem).

Let’s Solve Consensus!

• Processes fail only by crash-stopping
• Synchronous system: bounds on

– Message delays
– Max time for each process step
e.g., multiprocessor (common clock across processors)

• Asynchronous system: no such bounds!
e.g., The Internet! The Web!

For a system with at most f processes crashing, the algorithm proceeds in
f+1 rounds (with timeout), using basic multicast (B-multicast).
- A round is a numbered period of time where processes know its start

and end (kinda like an hour, only smaller)

- Valuesr
i: the set of proposed values known to process Pi at the beginning

of round r.
- Initially Values0

i = {} ; Values1
i = {vi=xp}

for round r = 1 to f+1 do
multicast (Values ri) // e.g., B-multicast
Values r+1

i ß Valuesr
i

for each Vj received
Values r+1

i = Values r+1
i È Vj

end
end
yp=di = minimum(Values f+2

i)

Consensus in Synchronous Systems

Why does the Algorithm Work?

• Proof by contradiction.
• Assume that two non-faulty processes differ in their final set

of values.
• Suppose pi and pj are these processes.
• Assume that pi possesses a value v that pj does not

possess.
à In the last (f+1) round, some third process, pk, sent v to pi, but crashed

before sending v to pj.
à In the f-th round, pk possessed the value v while pj did not.
à In the f-th round, some fourth process, pk2, sent v to pk, but crashed

before sending v to pj.
à Proceeding in this way, we infer at least one crash in each of the

preceding rounds.
à But are f+1 rounds ==> f+1 failures. Yet we assumed f crashes ==>

contradiction.

Consensus in an Asynchronous System

• Messages have arbitrary delay, processes
arbitrarily slow

• Impossible to achieve!
– even a single failed process is enough to avoid the system

from reaching agreement!
– Key observation: a slow process indistinguishable from a

crashed process
• Impossibility Applies to any protocol that claims

to solve consensus!

• Proved in a now-famous result by Fischer, Lynch
and Patterson, 1983 (FLP)
– Stopped many distributed system designers dead in their

tracks
– A lot of claims of “perfect reliability” vanished overnight

Summary

• Consensus Problem
– agreement in distributed systems
– Solution exists in synchronous system model (e.g.,

supercomputer)
– Impossible to solve in an asynchronous system (e.g.,

Internet, Web)
» Key idea: with only one process failure and

arbitrarily slow processes, there are always
sequences of events for the system to decide any
which way. Regardless of which consensus
algorithm is running underneath.

– FLP impossibility result

