Approximate Consensus

N processes, f crash faults ($\mathrm{N}>2 \mathrm{f}$)

Asynchronous systems

Properties:

Termination: eventually, each fault-free process has an output
Agreement:

Validity:

Approximate Consensus

N processes, f crash faults

$$
(\mathrm{N}>2 \mathrm{f})
$$

Asynchronous systems

Properties:

Termination: eventually, each fault-free process has an output
Agreement: each fault-free process has "roughly" the same output
Validity:

Approximate Consensus

N processes, f crash faults

$$
(\mathrm{N}>2 \mathrm{f})
$$

Asynchronous systems

Properties:

Termination: eventually, each fault-free process has an output
Agreement: each fault-free process has
"roughly" the same output
Validity: output inside convex hull

Approximate Consensus

real number line

Approximate Consensus Algorithm

Process i proceeds in asynchronous rounds

1. Initialization:

$$
\begin{aligned}
& y_{i}:=x_{i} \\
& r:=1
\end{aligned}
$$

2. Send message $\left(y_{i}, r\right)$ to all the processes including self.
3. Wait unt $1(n-f)$ mgsages of the form $(*, r)$ are received (including message from self).
4. Update $y_{i}=$ average of the $n-f$ values in the above $n-f$ messages. Note that the value is the first field in the tuple in each message.
5. $r:=r+1$
6. Go to step 2

Example Run of the Algorithm

■ Round 1 (from perspective of A)

A's new state
$=(0+1) / 2$
$=0.5$

Example Run of the Algorithm

- End of Round 1
 (suppose B and C did not wait for A's message)

Correctness

- Termination is obvious
- fixed number of asynchronous rounds
- Validity is also obvious
- validity: output inside convex hull \rightarrow due to "average"

Agreement

■ Tow processes i, j

- $R i[t]=$ values received at i in iteration t
- $R j[t]=$ values received at j in iteration t
- yi[t] = state at i in the end of iteration t
- $\mathrm{yj}[\mathrm{t}]=$ state at i in the end of iteration t
- Key observation: Ri[t] $\cap \operatorname{Rj}[t]$ is not empty

$$
N>2 f \text { and }|R i[t]|=|R j[t]|=N-f
$$

■ Exercise: show agreement
lyi[t]-yj[t]l approaches 0 as t increases

Broadcast

Reach agreement on what the source S has said

Broadcast

Reach agreement on what the source S has said

Byzantine Broadcast

- Any process may be Byzantine faulty, ...including the source S

■ See relevant textbook section

Lower Bounds for Byzantine Broadcast in a Synchronous System

- Number of rounds must be at least $f+1$
- Number of processes must be more than $3 f$

Number of Processes

Scenario 1: C is faulty

B should output x

Number of Processes

Scenario 2: S is faulty

Indistinguishable from Scenario 1 for B
$\rightarrow B$ should output x, so as C

Number of Processes

Scenario 3: B is faulty

Indistinguishable from Scenario 2 for C
$\rightarrow C$ should output x violating agreement

