Approximate Consensus

N processes, f crash faults (N > 2f)

Asynchronous systems

Properties:

Termination: eventually, each fault-free process has an output Agreement:

Validity:

Approximate Consensus

N processes, f crash faults (N > 2f)

Asynchronous systems

Properties:

Termination: eventually, each fault-free process has an output Agreement: each fault-free process has "roughly" the same output Validity:

Approximate Consensus

N processes, f crash faults (N > 2f)

Asynchronous systems

Properties:

Termination:	eventually, each fault-free process
	has an output
Agreement:	each fault-free process has
	"roughly" the same output
Validity:	output inside convex hull

real number line

Approximate Consensus Algorithm

Process i proceeds in asynchronous rounds

1. Initialization:

 $y_i := x_i$ r := 1

- 2. Send message (y_i, r) to all the processes including self.
- 3. Wait until (n f) messages of the form (*, r) are received (including message from self).
- Update y_i = average of the n − f values in the above n − f messages. Note that the value is the first field in the tuple in each message.
- 5. r := r + 1
- 6. Go to step 2

Example Run of the Algorithm

Round 1 (from perspective of A)

Example Run of the Algorithm

End of Round 1 (suppose B and C did not wait for A's message)

Termination is obvious

• fixed number of asynchronous rounds

- Validity is also obvious
 - validity: output inside convex hull \rightarrow due to "average"

Agreement

Tow processes i, j

- Ri[t] = values received at i in iteration t
- Rj[t] = values received at j in iteration t
- yi[t] = state at i in the end of iteration t
- yj[t] = state at i in the end of iteration t
- Key observation: Ri[t] ∩ Rj[t] is not empty

 N > 2f and
 |Ri[t]| = |Rj[t]| = N-f
- Exercise: show agreement lyi[t]-yj[t]l approaches 0 as t increases

Reach agreement on what the source S has said

Reach agreement on what the source S has said

Byzantine Broadcast

Any process may be Byzantine faulty, ...including the source S

See relevant textbook section

Lower Bounds for Byzantine Broadcast in a Synchronous System

Number of rounds must be at least f+1

Number of processes must be more than 3f

Number of Processes

Scenario 1: C is faulty

Number of Processes

Scenario 2: S is faulty

Indistinguishable from Scenario 1 for B → B should output x, so as C

Number of Processes

Scenario 3: B is faulty

Indistinguishable from Scenario 2 for C
 → C should output × violating agreement

6