Computer Science 425 Distributed Systems

CS 425 / ECE 428

Physical Clocks & Synchronization

- In a distributed system, each process has its own physical clock.
- Clock Skew versus Drift
 - Clock Skew = Relative Difference in clock values of two processes
 - Clock Drift = Relative Difference in clock frequencies (rates) of two processes
- A non-zero clock drift causes skew to increase

Synchronizing Clocks

- C_i(t): the reading of the software clock at process i when the real time is t.
- External synchronization: For a synchronization bound D>0, and for source S of UTC time,

$$|S(t)-C_i(t)| < D,$$

for i=1,2,...,N and for all real times t.

Clocks C_i are externally accurate to within the bound D.

• Internal synchronization: For a synchronization bound *D>0*,

$$\left| C_i(t) - C_j(t) \right| < D$$

for i, j=1,2,...,N and for all real times t.

Clocks C_i are internally accurate within the bound D.

Clock Synchronization Using a Time Server

Cristian's Algorithm

- Uses a time server to synchronize clocks
- Time server keeps the reference time
- A client asks the time server for time, the server responds with its current time *T*, and the client uses this received value to set its clock
- But network round-trip time introduces an error...

Let RTT = response-received-time – request-sent-time (measurable at client)

Also, suppose we know: (1) the minimum value *min* of the client-server one-way transmission time [Depends on what?]

(2) and that the server timestamped the message at the *last* possible instant before sending it back

Then, the actual time could be between [T+min,T+RTT— min]

What are the two extremes?

Cristian's Algorithm (2)

- ♣ Client sets its clock to halfway between T+min and T+RTT- min i.e., at T+RTT/2
 - Worst case skew in client clock time will be = half of this interval = (RTT/2 - min)
- Can increase clock value, but should not decrease it Why?

For unusually long RTTs, repeat the time request

The Network Time Protocol (NTP)

- Uses a network of time servers to synchronize all processes on a network.
- Time servers are connected by a synchronization subnet tree. The root is in touch with UTC. Each node synchronizes its

Messages Exchanged Between a Pair of NTP Peers ("Connected Servers")

Each message bears timestamps of recent message events: the local time when the previous NTP message was sent and received, and the local time when the current message was transmitted.

Theoretical Base for NTP

- t and t': actual transmission times for m and m'(unknown)
- o: true offset of clock at B relative to clock at A
- o_i: estimate of actual offset between the two clocks
- d_i: estimate of <u>accuracy</u> of o_i; total transmission times for m and m'; d_i=t+t'

$$T_{i-2} = T_{i-3} + t + o$$

$$T_i = T_{i-1} + t' - o$$

This leads to

$$d_i = t + t' = T_{i-2} - T_{i-3} + T_i - T_{i-1}$$

$$o = o_i + (t' - t)/2$$
, where

$$o_i = (T_{i-2} - T_{i-3} + T_{i-1} - T_i)/2.$$

It can then be shown that

$$o_i - d_i / 2 \le o \le o_i + d_i / 2$$
.

Summary |

- Time synchronization important for distributed systems
 - Cristian's algorithm
 - NTP