CS 425/ECE 428
Distributed Systems

Nitin Vaidya

Teaching Assistants

Samir Chaudhry
Zhikai Guo
Beomyeol Jeon
Ashwini Raina
Zhichun Wan

e Course handout

... textbook

... office hours

... Plazza

... grading policy

.. late submission policy

Course website

... mid-term exam schedule (to be posted)
... lectures page
.. homework

.. programming assignments
(for 4 credit hours only)

Language choice: C/C++/Java/Python

What’s this course about?

What this course is not about ...

As you can see, | have memorized this utterly
useless piece of information long enough to pass
a test question. | now intend to forget it forever.
You’ve taught me nothing except how to
cynically manipulate the system.

- 227277

Calvin and Hobbes

As you can see, | have memorized this utterly
useless piece of information long enough to pass
a test question. | now intend to forget it forever.
You’ve taught me nothing except how to
cynically manipulate the system.

- Calvin

Handout provided for 15t mid-term in Spring
2014 ... something similar this semester too

\Handout for Mid-term exam 1 I

The slides included here are aimost identical to the
corrections and reformatting

Note that the descriptions in these slides may not
provide a complete specification of the algorithms.

corresponding slides used in the class, except for some

Vector Logical Clocks

% With Lamport Logical Timestamp
31 > timestamp(e) < timestamp (1), but
timestamp(e) < timestamp (f) 2 {e > f} OR {e and f concurrent}
Vector Logical time addresses this issue:
N processes. Each uses a vector of counters (logical clocks),
initially all zero. ™" element is the clock value for process .
O Each process i increments the % element ofits vector V,
assigning fmestamp to an ¢

nt.
0 A message carries the Send event's vector timestamp.

O For areceive(message) event at process k

il =

Max(Vlil, Vimosaoelll) 1f] I8 not
{Vkulu =k

in Sy I

For a system with at most /processes crashing, the algorithm proceeds in
1 pounds (with timeout), using basic mulficast (B-mulficast)

- Aroundisa mumbered period of time where processes know its start
andend

. the set of prop o process F, atthe b
of round
 Inifially Yalues?, = (1 ; Vaues', = fr
forroundr=1tof+l do
multicast (Vaiues7) / e.g., B-multi cast
Values ™, € Values’',
for each. V (cmvcd

elizs ™, 57, UV, (U denotes union operation)
end

end

yped, = minimum(Vaties) (Atypoin this line has been

corrected hete)

\Ricart & Agrawala’s Algorithml

On imitalization
State

EASED
o enter the section
state = WANTED

1 s | bere
= roquest's imesany

Vi il wob of replies rceived = wim

state

On recept of arequssi <T, p,
e LD or irer VANTED ana(r: 5
then

uese request fromm g, without replying

ezt o,

reply to any queve tequest

Chandy and Lamport’s ‘Snapshot’ Algorithm I

Marie recetving e for process p,
receipt of a marker message over channel c:
if(p, has notyet recorded its state) it

torms on recording of messages ariving over other incoming channels;
p records the state of ¢ as the set of messages i
since it saved its state.

as received over ¢

endif
Warker sending rule for process p,
After p, has recorded its state, for each outgoing channel c
7 seads one marker message over ¢
(before it sends any other message over <),

‘Causal Ordering using vector timestampsl

Algorithm for group member p, (i = 1,2..., N)

On initialization

et o gogmeszices
VIO =12 o proc Tave been caer

precess i safar

To CO-multicast me\mge mto group g
it = vili+
B mu/mu\/(g *

On Bedeliver(< V5, m>) from p., with g = group(m)
place <%, m> in hold-back quer
wait until I"‘/[/[=

CO-deliv

),

Algorithm 1: Ring Election I

“*N Processes are organized in a logical fing
% p,has 2 communication channel 0 Py g
< All messages are sent clockwise around the ring
“Any process p that discovers the old coordinator has falled
Initiates an “election” message that contains p,” s own Id:attr.
This is the initiator of the election.
“*When a process p;recelves an efection message, it compares
the attr in the message with its own attr.
% If the arived atris greater, p forwards the message.

% It the arrved attis smaller and p, has ot yet forwarded an election
message, it overwrites the message with its own id-att, and forwards it
& Ifthe arrived that o,

{uhy?). and it becomes the new coo "This process then sends an
lectodt message t s nelghber vl 15, announéing the soction
result.

“*When a process p;receives an 2L dmessage, it
& sets its variable elected, & id of th
& forwards the message, unless itis

[,i orithm 3: Bully Algorithm '

hen a process finds the coordinator has
falled if it knows its id is the highest, it
elects itself as coordlnator. then sends a

o all pi
lower identifiers than itself

+*A process mltlates electlun by sending an
electlon messa grocesses that
have a |ghe than t
meout, send coordinator message to

Qifno
10Wer 1d BroCes3e8 > Done
it any answer recelved, then there ls some non-faul
ighef process - o, walt for coordinator message.
eived after another timeout, Start & new election.
“*A process thal re eives an “election”
message re wer message, &
starts its own electlon protocol (unless it
has already done so)

\Reliable R-Multicast Algorithm |

Aot

On initialization

For process p to R-multicast message m 10 group g
Bemulticas(g, m); !/ pe g is included as a destination
On B-deliver(m) at process q with g = group(m)
if(me Received)

then
Received = Received U {m};
if(q # p) then B-multicast(g, my; end if
Redeliver m;

end if

Theoretical Base for NTP|

uerB %
Time
ServerA T T
Tia=Tistt+o

«tand t':actual transmission tmes 7= Tia

for m and m* unknown)
+0 e offset o dock &t B Thisleads to

relabive to dack at A == Tip=Togs T
+0; eslimie of actual ofisst i Trar R RT

etvean he o docks 0= o+ (-1)/2, where

« 0 estimale
tal ansmsmm hes tor m
and m’, d=tit

2T+ T - TI2
Tt can then be shown that
o di12505 0+ di12.

Definition of Linearizability

+ Suppose @ is a sequence of invoeations and respanses for a
set of operations.

~ an invocation is not necsssarily immediately followsd by ifs
matching response, can have concurrent, overlapping ops

earizable if there exists @ permutation 17 of all the
operations in & (now each invecation is immediately
followed by its matching response) s.t.
~ 0 | X s legal (safisfies sequer
- responseof cper 0 before invocation of

operation O, ofore O, (1 rospadts reakfime
oFie of nartoveiapbing oporeions in 0.

spec) for all vars X, and

on 0, ccurs

\Algorithm to Implement Linearizable
hared Memory

Uses totally ordered broadeast as the underlying
communication system.

Each proc keeps @ replica for each shared variable

When read request arrives:

— send beast msg conaining request

~ when own bast msg arrives, return value in local replica
When write request arrives:

~ send heast msg cont

~ upon recoipt, each proc updates its replica’s valus

= when own beast msg arrives, respond with acl

What is distributed computing?

What is distributed computing?

Parallel computing versus distributed computing

Example:
To add N numbers where N very large

use 4 processors, each adding up N/4,
then add the 4 partial sums

Parallel or distributed ?

What is distributed computing?

* Parallel computing versus distributed computing

* Role of uncertainty in distributed systems
— Clock drift
— Network delays
— Network losses
— Asynchrony
— Failures

A distributed system is one in which the failure
of a computer you didn't even know existed can
render your own computer unusable.

Leslie Lamport

Message-Passing & Shared Memory

* Message passing: Communicate by
sending/receiving messages

 Shared memory: Communicate by
writing/reading shared memory

What is distributed computing?

* Parallel computing versus distributed computing

* Role of uncertainty in distributed systems
— Clock drift
— Network delays
— Network losses
— Asynchrony
— Failures

Clocks

* Notion of time very useful in real life,
and so it is in distributed systems

 Example ...

Submit programming assignment
by e-mail by 11:59 pm Monday

Clocks

* Notion of time very useful in real life,
and so it is in distributed systems

 Example ...

Submit programming assignment
by e-mail by 11:59 pm Monday

By which clock ?

Clocks

* Notion of time very useful in real life,
and so it is in distributed systems

 Example ...
Submit programming assignment
by e-mail by 11:59 pm Monday

If it reaches at 12:01, how do we
know it was sent by 11:59 pm?

How to synchronize clocks?

How to synchronize clocks?

Role of delay uncertainty

Ordering of Events

* |f we can’t have “perfectly” synchronized
clocks, can we still accurately determine
what happened first?

What is distributed computing?

* Parallel computing versus distributed computing

* Role of uncertainty in distributed systems
— Clock drift
— Network delays
— Network losses
— Asynchrony
— Failures

Mutual Exclusion

 We want only one person to speak

* Only the person holding the microphone may
speak

* Must acquire microphone before speaking

Mutual Exclusion

* How to implement in a message-passing
system?

* How to implement in shared memory system?

Mutual Exclusion

 What if messages may be lost?

What is distributed computing?

* Parallel computing versus distributed computing

* Role of uncertainty in distributed systems
— Clock drift
— Network delays
— Network losses
— Asynchrony
— Failures

Agreement

e Where to meet for dinner?

Agreement with Failure

* Non-faulty nodes must agree

Agreement with
Crash Failure & Asynchrony

What if nodes misbehave?

* Crash failures are benign

* Other extreme ... Byzantine failures

Agreement with Byzantine failures
(synchronous system)

How to improve system availability?

* Potentially large network delays ... network
partition

 Failures

Replication is a common approach

Consider a storage system

 |f data stored only in one place, far away user
will incur significant access delay

=>» Store data in multiple replicas,

Clients prefer to access “closest” replica

Replicated Storage

* How to keep replicas “consistent” ?

 What does “consistent” really mean?

What’s this course about?

e Learn to “reason” about distributed systems
... hot just facts, but principles

* Learn important canonical problems, and
some solutions

* 4 hour version: Programming experience

* |n class: we will focus on principles

* Supplemental readings: read about practical
aspects, recent industry deployments

Scope

Communication models:
— message passing

— shared memory

Timing models:

— synchronous

— Asynchronous

Fault models
— Crash
— Byzantine

Distributed "primitives”

Shared Memory

e Different processes (or threads of execution)
can communicate by writing to/reading from
(physically) shared memory

Shared Memory

Distributed Shared Memory

* The “shared memory” may be simulated by
using local memory of different processors

Distributed Shared Memory

Key-Value Stores

Consistency Model

* Since shared memory may be accessed by
different processes concurrently, we need to
define how the updates are observed by the
processes

* Consistency model captures these
requirements

Consistency #1

Alice: My cat was hit by a car.
Alice: But luckily she is fine.
Bob: That's great!

What should Calvin observe?

Consistency #1

Alice: My cat was hit by a car.
Alice: But luckily she is fine.
Bob: That's great!

What should Calvin observe?

Consistency #2

Alice: My cat was hit by a car.
Alice: But luckily she is fine. Bob: That’s terrible!

What should Calvin observe?

Consistency #2

Alice: My cat was hit by a car.
Alice: But luckily she is fine. Bob: That’s terrible!

What should Calvin observe?

