Key discrete-type distributions

$\operatorname{Bernoulli}(p): \quad 0 \leq p \leq 1$

$$
\begin{aligned}
& \text { pmf: } p(i)=\left\{\begin{array}{cc}
p & i=1 \\
1-p & i=0
\end{array}\right. \\
& \text { mean: } p \quad \text { variance: } p(1-p)
\end{aligned}
$$

Example: One if heads shows and zero if tails shows for the flip of a coin. The coin is called fair if $p=\frac{1}{2}$ and biased otherwise.
$\operatorname{Binomial}(n, p): \quad n \geq 1,0 \leq p \leq 1$

$$
\text { pmf: } p(i)=\binom{n}{i} p^{i}(1-p)^{n-i} \quad 0 \leq i \leq n
$$

$$
\text { mean: } n p \quad \text { variance: } n p(1-p)
$$

Significance: Sum of n independent Bernoulli random variables with parameter p.

Poisson(λ): $\quad \lambda \geq 0$

$$
\text { pmf: } p(i)=\frac{\lambda^{i} e^{-\lambda}}{i!} \quad i \geq 0
$$

mean: λ variance: λ
Example: Number of phone calls placed during a ten second interval in a large city.
Significant property: The Poisson pmf is the limit of the binomial pmf as $n \rightarrow+\infty$ and $p \rightarrow 0$ in such a way that $n p \rightarrow \lambda$.

Geometric $(p): 0<p \leq 1$

$$
\begin{aligned}
& \text { pmf: } p(i)=(1-p)^{i-1} p \quad i \geq 1 \\
& \text { mean: } \frac{1}{p} \quad \text { variance: } \frac{1-p}{p^{2}}
\end{aligned}
$$

Example: Number of independent tosses of a coin until heads first appears.
Significant property: If L has the geometric distribution with parameter $p, P\{L>i\}=(1-p)^{i}$ for integers $i \geq 1$. So L has the memoryless property in discrete time:

$$
P\{L>i+j \mid L>i\}=P\{L>j\} \text { for } i, j \geq 0
$$

Any positive integer-valued random variable with this property has the geometric distribution for some p.

Key continuous-type distributions

Gaussian or $\operatorname{Normal}\left(\mu, \sigma^{2}\right) \quad \mu \in \mathbb{R}, \sigma \geq 0$

$$
\text { pdf : } f(u)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(u-\mu)^{2}}{2 \sigma^{2}}\right) \quad \text { mean: } \mu \quad \text { variance: } \sigma^{2}
$$

Notation: $Q(c)=1-\Phi(c)=\int_{c}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u$
Significant property (CLT): For independent, indentically distributed r.v.'s with mean mean μ, variance σ^{2} :

$$
\lim _{n \rightarrow \infty} P\left\{\frac{X_{1}+\cdots+X_{n}-n \mu}{\sqrt{n \sigma^{2}}} \leq c\right\}=\Phi(c)
$$

Exponential (λ)

$$
\text { pdf: } f(t)=\lambda e^{-\lambda t} \quad t \geq 0 \quad \text { mean: } \frac{1}{\lambda} \quad \text { variance: } \frac{1}{\lambda^{2}}
$$

Example: Time elapsed between noon sharp and the first time a telephone call is placed after that, in a city, on a given day.

Significant property: If T has the exponential distribution with parameter $\lambda, P\{T \geq t\}=e^{-\lambda t}$ for $t \geq 0$. So T has the memoryless property in continuous time:

$$
P\{T \geq s+t \mid T \geq s\} \quad=P\{T \geq t\} \quad s, t \geq 0
$$

Any nonnegative random variable with the memoryless property in continuous time is exponentially distributed.
$\operatorname{Uniform}(a, b): \quad-\infty<a<b<\infty$

$$
\text { pdf: } f(u)=\left\{\begin{array}{cc}
\frac{1}{b-a} & a \leq u \leq b \\
0 & \text { else }
\end{array} \quad \text { mean: } \frac{a+b}{2} \quad \text { variance: } \frac{(b-a)^{2}}{12}\right.
$$

$\operatorname{Erlang}(r, \lambda): \quad r \geq 1, \lambda \geq 0$

$$
\text { pdf: } f(t)=\frac{\lambda^{r} t^{r-1} e^{-\lambda t}}{(r-1)!} \quad t \geq 0 \quad \text { mean: } \frac{r}{\lambda} \quad \text { variance: } \frac{r}{\lambda^{2}}
$$

Significant property: The distribution of the sum of r independent random variables, each having the exponential distribution with parameter λ. (If $r>0$ is real valued and $(r-1)$! is replaced by $\Gamma(r)$ the gamma distribution is obtained.)
$\operatorname{Rayleigh}\left(\sigma^{2}\right): \quad \sigma^{2}>0$

$$
\begin{aligned}
& \text { pdf: } f(r)=\frac{r}{\sigma^{2}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right) \quad r>0 \quad \mathrm{CDF}: 1-\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right) \\
& \text { mean: } \sigma \sqrt{\frac{\pi}{2}} \quad \text { variance: } \sigma^{2}\left(2-\frac{\pi}{2}\right)
\end{aligned}
$$

Example: Instantaneous value of the envelope of a mean zero, narrow band noise signal.
Significant property: If X and Y are independent, $N\left(0, \sigma^{2}\right)$ random variables, then $\left(X^{2}+Y^{2}\right)^{\frac{1}{2}}$ has the Rayleigh $\left(\sigma^{2}\right)$ distribution. Failure rate function is linear: $h(t)=\frac{t}{\sigma^{2}}$.

