(©2012 Steven S. Lumetta. All rights reserved. 3

ECE199JL: Introduction to Computer Engineering Fall 2012
Notes Set 1.2

The 2’s Complement Representation

This set of notes explains the rationale for using the 2’s complement representation for signed integers and
derives the representation based on equivalence of the addition function to that of addition using the un-
signed representation with the same number of bits.

Review of Bits and the Unsigned Representation

In modern digital systems, we represent all types of information using binary digits, or bits. Logically, a
bit is either 0 or 1. Physically, a bit may be a voltage, a magnetic field, or even the electrical resistance of
a tiny sliver of glass. Any type of information can be represented with an ordered set of bits, provided that
any given pattern of bits corresponds to only one value and that we agree in advance on which pattern of bits
represents which value.

For unsigned integers—that is, whole numbers greater or equal to zero—we chose to use the base 2 represen-
tation already familiar to us from mathematics. We call this representation the unsigned representation.
For example, in a 4-bit unsigned representation, we write the number 0 as 0000, the number 5 as 0101,
and the number 12 as 1100. Note that we always write the same number of bits for any pattern in the
representation: in a digital system, there is no “blank” bit value.

Picking a Good Representation

In class, we discussed the question of what makes one representation better than another. The value of
the unsigned representation, for example, is in part our existing familiarity with the base 2 analogues of
arithmetic. For base 2 arithmetic, we can use nearly identical techniques to those that we learned in
elementary school for adding, subtracting, multiplying, and dividing base 10 numbers.

Reasoning about the relative merits of representations from a practical engineering perspective is (prob-
ably) currently beyond your ability. Saving energy, making the implementation simple, and allowing the
implementation to execute quickly probably all sound attractive, but a quantitative comparison between two
representations on any of these bases requires knowledge that you will acquire in the next few years.

We can sidestep such questions, however, by realizing that if a digital system has hardware to perform
operations such as addition on unsigned values, using the same piece of hardware to operate on other
representations incurs little or no additional cost. In this set of notes, we discuss the 2’s complement repre-
sentation, which allows reuse of the unsigned add unit (as well as a basis for performing subtraction of either
representation using an add unit!). In discussion section and in your homework, you will use the same idea
to perform operations on other representations, such as changing an upper case letter in ASCII to a lower
case one, or converting from an ASCII digit to an unsigned representation of the same number.

The Unsigned Add Unit

In order to define a representation for signed integers that allows us to reuse a piece of hardware designed
for unsigned integers, we must first understand what such a piece of hardware actually does (we do not need
to know how it works yet—we’ll explore that question later in our class).

The unsigned representation using N bits is not closed under addition. In other words, for any value of NV, we
can easily find two N-bit unsigned numbers that, when added together, cannot be represented as an IN-bit
unsigned number. With N = 4, for example, we can add 12 (1100) and 6 (0110) to obtain 18. Since 18
is outside of the range [0,2* — 1] representable using the 4-bit unsigned representation, our representation
breaks if we try to represent the sum using this representation. We call this failure an overflow condition:
the representation cannot represent the result of the operation, in this case addition.

4 (©2012 Steven S. Lumetta. All rights reserved.

Using more bits to represent the answer is not an attractive solution, since we might then
want to use more bits for the inputs, which in turn requires more bits for the outputs,
and so on. We cannot build something supporting an infinite number of bits. Instead, we
choose a value for N and build an add unit that adds two N-bit numbers and produces
an N-bit sum (and some overflow indicators, which we discuss in the next set of notes).
The diagram to the right shows how we might draw such a device, with two N-bit numbers
entering at from the top, and the N-bit sum coming out from the bottom.

N-bit
add unit

The function used for N-bit unsigned addition is addition modulo 2V. In a practical sense,

you can think of this function as simply keeping the last N bits of the answer; other bits . éﬂg EflS)Z)
are simply discarded. In the example to the right, we add 12 and 6 to obtain 18, but then 10010 (2)
discard the extra bit on the left, so the add unit produces 2 (an overflow).

Modular arithmetic defines a way of performing arithmetic

for a finite number of possible values, usually integers. As a

concrete example, let’s use modulo 16, which corresponds to | H H |

the addition unit for our 4-bit examples. . ."16 "1 ? 1516 ‘31 ce
a second group one group a third group
Starting with the full range of integers, we can define equiva- of numbers of numbers of numbers
lence classes for groups of 16 integers by simply breaking up

the number line into contiguous groups, starting with the numbers 0 to 15, as shown to the right. The
numbers -16 to -1 form a group, as do the numbers from 16 to 31. An infinite number of groups are defined

in this manner.

You can think of these groups as defining equivalence classes modulo 16. All of the first numbers in the
groups are equivalent modulo 16. All of the second numbers in the groups are equivalent modulo 16. And
so forth. Mathematically, we say that two numbers A and B are equivalent modulo 16, which we write as

(A = B) mod 16

if and only if A = B + 16k for some integer k.

Deriving 2’s Complement

Given these equivalence classes, we might
instead choose to draw a circle to iden-
tify the equivalence classes and to associate
each class with one of the sixteen possible
4-bit patterns, as shown to the right. Us-
ing this circle representation, we can add by
counting clockwise around the circle, and
we can subtract by counting in a counter- equivalence classes
. —4,12,28, .= modulo 16

clockwise direction around the circle. With (binary pattems inside circle)
an unsigned representation, we choose to

use the group from [0, 15] (the middle group
in the diagram markings to the right) as
the number represented by each of the pat-
terns. Overflow occurs with unsigned addi-
tion (or subtraction) because we can only
choose one value for each binary pattern. w788, 24, ..

., 2,14, 30, ...

., —3,13,29, ..

In fact, we can choose any single value for each pattern to create a representation, and our add unit will
always produce results that are correct modulo 16. Look back at our overflow example, where we added 12
and 6 to obtain 2, and notice that (2 = 18) mod 16. Normally, only a contiguous sequence of integers makes
a useful representation, but we do not have to restrict ourselves to non-negative numbers.

(©2012 Steven S. Lumetta. All rights reserved. 5

The 2’s complement representation can then be defined by choosing a set of integers balanced around zero
from the groups. In the circle diagram, for example, we might choose to represent numbers in the range
[—7,7] when using 4 bits. What about the last pattern, 10007 We could choose to represent either -8 or 8.
The number of arithmetic operations that overflow is the same with both choices (the choices are symmetric
around 0, as are the combinations of input operands that overflow), so we gain nothing in that sense from ei-
ther choice. If we choose to represent -8, however, notice that all patterns starting with a 1 bit then represent
negative numbers. No such simple check arises with the opposite choice, and thus an N-bit 2’s complement
representation is defined to represent the range [-2V 1, 2V =1 1] with patterns chosen as shown in the circle.

An Algebraic Approach

Some people prefer an algebraic approach to understanding the definition of 2’s complement, so we present
such an approach next. Let’s start by writing f(A, B) for the result of our add unit:

f(A,B) = (A+ B) mod 2V

We assume that we want to represent a set of integers balanced around 0 using our signed representation, and
that we will use the same binary patterns as we do with an unsigned representation to represent non-negative
numbers. Thus, with an N-bit representation, the patterns in the range [0,2V~! — 1] are the same as those
used with an unsigned representation. In this case, we are left with all patterns beginning with a 1 bit.
The question then is this: given an integer k, 2V~1 > k > 0, for which we want to find a pattern to
represent —k, and any integer m > 0 that we might want to add to —k, can we find another integer p > 0
such that

(~k+m=p+m) mod 2V ? (1)

If we can, we can use p’s representation to represent —k and our unsigned addition unit f(A, B) will work
correctly.

To find the value p, start by subtracting m from both sides of Equation (1) to obtain:

(—k = p) mod 2V (2)

Note that (2% = 0) mod 2V, and add this equation to Equation (2) to obtain

(2N — k = p) mod 2V

Let p = 2¥ — k. Then, since 2¥~1 > k& > 0, we have 2V 7! < p < 2¥. But these patterns are all unused
(they all start with a 1 bit)! (They also match our circle diagram from the last section exactly, of course.)

Negating 2’s Complement Numbers

The algebraic approach makes understanding 2’s complement negation fairly straightforward, and gives us
an easy procedure for doing so. Recall that given an integer k in an N-bit 2’s complement representation,
the N-bit pattern for —k is given by 2% — k (also true for k = 0 if we keep only the low N bits of the
result). But 2% = (2 — 1) 4+ 1. Note that 2% — 1 is the pattern of all 1 bits. Subtracting any value k from
this value is equivalent to simply flipping the bits, changing Os to 1s and 1s to 0s. (This operation is called
a 1’s complement, by the way.) We then add 1 to the result to find the pattern for —k.

Negation can overflow, of course. Try finding the negative pattern for -8 in 4-bit 2’s complement.

