42 (©2012 Steven S. Lumetta. All rights reserved.

ECE199JL: Introduction to Computer Engineering Fall 2012

Notes Set 2.8
Summary of Part 2 of the Course

The difficulty of learning depends on the type of task involved. Remembering new terminology is relatively
easy, while applying the ideas underlying design decisions shown by example to new problems posed as
human tasks is relatively hard. In this short summary, we give you lists at several levels of difficulty of
what we expect you to be able to do as a result of the last few weeks of studying (reading, listening, doing
homework, discussing your understanding with your classmates, and so forth).

We'll start with the easy stuff. You should recognize all of these terms and be able to explain what they
mean. For the specific circuits, you should be able to draw them and explain how they work. Actually, we
don’t care whether you can draw something from memory—a full adder, for example—provided that you
know what a full adder does and can derive a gate diagram correctly for one in a few minutes. Higher-level
skills are much more valuable. (You may skip the *’d terms in Fall 2012.)

e Boolean functions and logic gates e device technology

- NOT/inverter - complementary metal-oxide
- AND semiconductor (CMOS)

- OR - field effect transistor (FET)
- XOR - transistor gate, source, drain
- NAND e Boolean logic terms

- NOR - literal

- XNOR - algebraic properties

majority function

e specific logic circuits

full adder

ripple carry adder

R-S latch

R-S latch

gated D latch

master-slave implementation of a
positive edge-triggered D flip-flop
(bidirectional) shift register*
register supporting parallel load*

e design metrics

metric

optimal

heuristic

constraints

power, area/cost, performance
computer-aided design (CAD)
tools

gate delay

e general math concepts

canonical form
N-dimensional hypercube

e tools for solving logic problems

truth table

Karnaugh map (K-map)
implicant

prime implicant
bit-slicing

timing diagram

- dual form, principle of duality
- sum, product

- minterm, maxterm

- sum-of-products (SOP)

- product-of-sums (POS)

- canonical sum/SOP form

- canonical product/POS form
- logical equivalence

e digital systems terms

- word size
- N-bit Gray code
- combinational /combinatorial logic
- two-level logic
- “don’t care” outputs (x’s)
- sequential logic
- state
- active low inputs
- set a bit (to 1)
reset a bit (to 0)
- master-slave implementation
- positive edge-triggered
- clock signal
- square wave
- rising/positive clock edge
- falling/negative clock edge
- clock gating
- clocked synchronous sequential circuits
- parallel/serial load of registers*
- glue logic*
- logical/arithmetic/cyclic shift*



(©2012 Steven S. Lumetta. All rights reserved. 43

We expect you to be able to exercise the following skills:
e Design a CMOS gate from n-type and p-type transistors.
e Apply DeMorgan’s laws repeatedly to simplify the form of the complement of a Boolean expression.
e Use a K-map to find a reasonable expression for a Boolean function (for example, in POS or SOP form
with the minimal number of terms).
e More generally, translate Boolean logic functions among concise algebraic, truth table, K-map, and
canonical (minterm/maxterm) forms.

When designing combinational logic, we expect you to be able to apply the following design strategies:
e Make use of human algorithms (for example, multiplication from addition).
Determine whether a bit-sliced approach is applicable, and, if so, make use of one.
Break truth tables into parts so as to solve each part of a function separately.
Make use of known abstractions (adders, comparators, or other abstractions available to you) to simplify
the problem.

And, at the highest level, we expect that you will be able to do the following:

e Understand and be able to reason at a high-level about circuit design tradeoffs between area/cost and
performance (and that power is also important, but we haven’t given you any quantification methods).

e Understand the tradeoffs typically made to develop bit-sliced designs—typically, bit-sliced designs are
simpler but bigger and slower—and how one can develop variants between the extremes of the bit-sliced
approach and optimization of functions specific to an N-bit design.

e Understand the pitfalls of marking a function’s value as “don’t care” for some input combinations, and
recognize that implementations do not produce “don’t care.”

e Understand the tradeoffs involved in selecting a representation for communicating information between
elements in a design, such as the bit slices in a bit-sliced design.

e Explain the operation of a latch or a flip-flop, particularly in terms of the bistable states used to hold
a bit.

e Understand and be able to articulate the value of the clocked synchronous design abstraction.



