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ECE199JL: Introduction to Computer Engineering Fall 2012
Notes Set 3.1

Serialization and Finite State Machines

The third part of our class builds upon the basic combinational and sequential logic elements that we
developed in the second part. After discussing a simple application of stored state to trade between area and
performance, we introduce a powerful abstraction for formalizing and reasoning about digital systems, the
Finite State Machine (FSM). General FSM models are broadly applicable in a range of engineering contexts,
including not only hardware and software design but also the design of control systems and distributed
systems. We limit our model so as to avoid circuit timing issues in your first exposure, but provide some
amount of discussion as to how, when, and why you should eventually learn the more sophisticated models.
Through development a range of FSM examples, we illustrate important design issues for these systems and
motivate a couple of more advanced combinational logic devices that can be used as building blocks. Together
with the idea of memory, another form of stored state, these elements form the basis for development of
our first computer. At this point we return to the textbook, in which Chapters 4 and 5 provide a solid
introduction to the von Neumann model of computing systems and the LC-3 (Little Computer, version 3)
instruction set architecture. By the end of this part of the course, you will have seen an example of the
boundary between hardware and software, and will be ready to write some instructions yourself.

In this set of notes, we cover the first few parts of this material. We begin by describing the conversion of
bit-sliced designs into serial designs, which store a single bit slice’s output in flip-flops and then feed the
outputs back into the bit slice in the next cycle. As a specific example, we use our bit-sliced comparator
to discuss tradeoffs in area and performance. We introduce Finite State Machines and some of the tools
used to design them, then develop a handful of simple counter designs. Before delving too deeply into FSM
design issues, we spend a little time discussing other strategies for counter design and placing the material
covered in our course in the broader context of digital system design. Remember that sections marked with
an asterisk are provided solely for your interest, but you may need to learn this material in later classes.

Serialization: General Strategy

In previous notes, we discussed and illustrated the development of bit-sliced logic, in which one designs a
logic block to handle one bit of a multi-bit operation, then replicates the bit slice logic to construct a design
for the entire operation. We developed ripple carry adders in this way in Notes Set 2.3 and both unsigned
and 2’s complement comparators in Notes Set 2.4.

Another interesting design strategy is serialization: rather than replicating the bit slice, we can use flip-
flops to store the bits passed from one bit slice to the next, then present the stored bits to the same bit slice
in the next cycle. Thus, in a serial design, we only need one copy of the bit slice logic! The area needed
for a serial design is usually much less than for a bit-sliced design, but such a design is also usually slower.
After illustrating the general design strategy, we’ll consider these tradeoffs more carefully in the context of
a detailed example.

Recall the general bit-sliced design ap- a general bit-sliced design
proach, as illustrated to the right. Some
number of copies of the logic for a single
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final bit slice’s results to produce R bits more external output.
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We can transform this bit-sliced design to a serial design with a single copy of the bit slice logic, M + @
flip-flops, and M gates (and sometimes an inverter). The strategy is illustrated on the right below. A
single copy of the bit slice operates on one set of P external input bits and produces one set of @ external
output bits each clock cycle. In the design shown, these output bits are available during the next cycle, after
they have been stored in the flip-flops. The M bits to be passed to the “next” bit slice are also stored in
flip-flops, and in the next cycle are provided back to the same physical bit slice as inputs. The first cycle of a
multi-cycle operation must be handled slightly differently, so we add selection logic and an control signal, F.
For the first cycle, we apply F' = 1, and the initial values are passed into the bit slice. For all other bits,
we apply F' = 0, and the values stored in the flip-flops are returned to the bit slice’s inputs. After all bits
have passed through the bit slice—after N cycles for an N-bit design—the final M bits are stored in the
flip-flops, and the results are calculated by the output logic.

a serialized bit-sliced design
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The selection logic merits explanation. Given that the original design initialized the bits to constant values
(0s or 1s), we need only simple logic for selection. The two drawings on the left above illustrate how B;,
the complemented flip-flop output for a bit ¢, can be combined with the first-cycle signal F' to produce an
appropriate input for the bit slice. Selection thus requires one extra gate for each of the M inputs, and we
need an inverter for F' if any of the initial values is 1.

Serialization: Comparator Example

We now apply the general strategy to a
specific example, our bit-sliced unsigned
comparator from Notes Set 2.4. The result is
shown to the right. In terms of the general J J

model, the single comparator bit slice ac- J DB Q ! e
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a serial unsigned comparator
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case a single bit from each of the two numbers bit
being compared, presented to the bit slice in slice
increasing order of significance. The bit slice
produces no external output other than the ] @T
final result (@ = 0). Two bits (M = 2) are
produced each cycle by the bit slice and stored
into flip flops B; and By. These bits represent the relationship between the two numbers compared so far
(including only the bit already seen by the comparator bit slice). On the first cycle, when the least significant
bits of A and B are being fed into the bit slice, we set F' = 1, which forces the C; and Cy inputs of the
bit slice to 0 independent of the values stored in the flip-flops. In all other cycles, F' = 0, and the NOR
gates set C1 = B; and Cy = By. Finally, after NV cycles for an N-bit comparison, the output logic—in
this case simply wires, as shown in the dashed box—places the result of the comparison on the Z; and Zj
outputs (R = 2 in the general model). The result is encoded in the representation defined for constructing
the bit slice (see Notes Set 2.4, but the encoding does not matter here).

Zo D Q
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How does the serial design compare a comparator bit slice (optimized, NAND/NOR)
with the bit-sliced design? As an

estimate of area, let’s count gates. Gt b
Our optimized design is replicated A .
to the right for convenience. Each 'l> o o '

bit slice requires six 2-input gates
and two inverters. Assume that 4>o—
each flip-flop requires eight 2-input B
gates and two inverters, so the se-
rial design overall requires 24 gates
and six inverters to handle any number of bits. Thus, for any number of bits N > 4, the serial design is
smaller than the bit-sliced design, and the benefit grows with N.

Zo
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What about performance? In Notes Set 2.4, we counted gate delays for our bit-sliced design. The path
from A or B to the outputs is four gate delays, but the C' to Z paths are all two gate delays. Overall, then,
the bit-sliced design requires 2N + 2 gate delays for N bits. What about the serial design?

The performance of the serial design is likely to be much worse for three reasons. First, all paths in the
design matter, not just the paths from bit slice to bit slice. None of the inputs can be assumed to be available
before the start of the clock cycle, so we must consider all paths from input to output. Second, we must also
count gate delays for the selection logic as well as the gates embedded in the flip-flops. Finally, the result
of these calculations may not matter, since the clock speed may well be limited by other logic elsewhere in
the system. If we want a common clock for all of our logic, the clock must not go faster than the slowest
element in the entire system, or some of our logic will not work properly.

What is the longest path through our serial comparator? Let’s assume that the path through a flip-flop is
eight gate delays, with four on each side of the clock’s rising edge. The inputs A and B are likely to be
driven by flip-flops elsewhere in our system, so we conservatively count four gate delays to A and B and five
gate delays to C1 and Cj (the extra one comes from the selection logic). The A and B paths thus dominate
inside the bit slice, adding four more gate delays to the outputs Z; and Z,. Finally, we add the last four
gate delays to flip the first latch in the flip-flops for a total of 12 gate delays. If we assume that our serial
comparator limits the clock frequency (that is, if everything else in the system can use a faster clock), we
take 12 gate delays per cycle, or 12N gate delays to compare two N-bit numbers.

You might also notice that adding support for 2’s complement is no longer free. We need extra logic to swap
the A and B inputs in the cycle corresponding to the sign bits of A and B. In other cycles, they must remain
in the usual order. This extra logic is not complex, but adds further delay to the paths.

The bit-sliced and serial designs represent two extreme points in a broad space of design possibilities. Op-
timization of the entire N-bit logic function (for any metric) represents a third extreme. As an engineer,
you should realize that you can design systems anywhere in between these points as well. At the end of
Notes Set 2.4, for example, we showed a design for a logic slice that compares two bits at a time. In general,
we can optimize logic for any number of bits and then apply multiple copies of the resulting logic in space
(a generalization of the bit-sliced approach), or in time (a generalization of the serialization approach), or
in a combination of the two. Sometimes these tradeoffs may happen at a higher level. As mentioned in
Notes Set 2.3, computer software uses the carry out of an adder to perform addition of larger groups of
bits (over multiple clock cycles) than is supported by the processor’s adder hardware. In computer system
design, engineers often design hardware elements that are general enough to support this kind of extension
in software.

As a concrete example of the possible tradeoffs, consider a serial comparator design based on the 2-bit slice
variant. This approach leads to a serial design with 24 gates and 10 inverters, which is not much larger than
our earlier serial design. In terms of gate delays, however, the new design is identical, meaning that we finish
a comparison in half the time. More realistic area and timing metrics show slightly more difference between
the two designs. These differences can dominate the results if we blindly scale the idea to handle more bits
without thinking carefully about the design. Neither many-input gates nor gates driving many outputs work
well in practice.
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Finite State Machines

A finite state machine (or FSM) is a model for understanding the behavior of a system by describing
the system as occupying one of a finite set of states, moving between these states in response to external
inputs, and producing external outputs. In any given state, a particular input may cause the FSM to move
to another state; this combination is called a transition rule. An FSM comprises five parts: a finite set of
states, a set of possible inputs, a set of possible outputs, a set of transition rules, and methods for calculating
outputs.

When an FSM is implemented as a digital system, all states must be represented as patterns using a fixed
number of bits, all inputs must be translated into bits, and all outputs must be translated into bits. For
a digital FSM, transition rules must be complete; in other words, given any state of the FSM, and any
pattern of input bits, a transition must be defined from that state to another state (transitions from a state
to itself, called self-loops, are acceptable). And, of course, calculation of outputs for a digital FSM reduces
to Boolean logic expressions. In this class, we focus on clocked synchronous FSM implementations, in which
the FSM’s internal state bits are stored in flip-flops.

In this section, we introduce the tools used to describe, develop, and analyze implementations of FSMs with
digital logic. In the next few weeks, we will show you how an FSM can serve as the central control logic in a
computer. At the same time, we will illustrate connections between FSMs and software and will make some
connections with other areas of interest in ECE, such as the design and analysis of digital control systems.

The table below gives a list of abstract states for a typical keyless entry system for a car. In this case,
we have merely named the states rather than specifying the bit patterns to be used for each state—for this
reason, we refer to them as abstract states. The description of the states in the first column is an optional
element often included in the early design stages for an FSM, when identifying the states needed for the
design. A list may also include the outputs for each state. Again, in the list below, we have specified these
outputs abstractly. By including outputs for each state, we implicitly assume that outputs depend only on
the state of the FSM. We discuss this assumption in more detail later in these notes (see “Machine Models”),
but will make the assumption throughout our class.

meaning state driver’s door other doors alarm on
vehicle locked LOCKED locked locked no
driver door unlocked DRIVER unlocked locked no
all doors unlocked UNLOCKED unlocked unlocked no
alarm sounding ALARM locked locked yes

Another tool used with FSMs is the next-state table (sometimes called a state transition table, or just
a state table), which maps the current state and input combination into the next state of the FSM. The
abstract variant shown below outlines desired behavior at a high level, and is often ambiguous, incomplete,
and even inconsistent. For example, what happens if a user pushes two buttons? What happens if they
push unlock while the alarm is sounding? These questions should eventually be considered. However, we
can already start to see the intended use of the design: starting from a locked car, a user can push “unlock”
once to gain entry to the driver’s seat, or push “unlock” twice to open the car fully for passengers. To lock
the car, a user can push the “lock” button at any time. And, if a user needs help, pressing the “panic”
button sets off an alarm.

state action/input next state
LOCKED push “unlock” DRIVER
DRIVER  push “unlock” UNLOCKED
(any) push “lock” LOCKED
(any) push “panic”  ALARM
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A state transition diagram (or transition
diagram, or state diagram), as shown to the
right, illustrates the contents of the next-state
table graphically, with each state drawn in a
circle, and arcs between states labeled with the
input combinations that cause these transitions
from one state to another.

Putting the FSM design into this graphical
form does not solve the problems with the ab-
stract model. The questions that we asked in
regard to the next-state table remain unan-
swered.

Implementing an FSM using digital logic re-
quires that we translate the design into bits,
eliminate any ambiguity, and complete the
specification. How many internal bits should
we use? What are the possible input val-
ues, and how are their meanings represented
in bits? What are the possible output val-
ues, and how are their meanings represented
in bits? We will consider these questions for
several examples in the coming weeks.

push
"lock"

push "unlock”
DRIVER
push "lock"

"unlock"

— |UNLOCKED
push "panic”

"panic"

For now, we simply define answers for our example design, the keyless entry system. Given four states, we
need at least [log,(4)] = 2 bits of internal state, which we store in two flip-flops and call S1S5. The table
below lists input and output signals and defines their meaning.

outputs D
R

A

inputs U
L

P

driver door; 1 means unlocked

other doors (Remaining doors); 1 means unlocked
alarm; 1 means alarm is sounding

unlock button; 1 means it has been pressed

lock button; 1 means it has been pressed

panic button; 1 means it has been pressed

We can now choose a representation for our states and rewrite the list of states, using bits both for the states
and for the outputs. We also include the meaning of each state for clarity in our example. Note that we can
choose the internal representation in any way. Here we have matched the D and R outputs when possible to
simplify the output logic needed for the implementation. The order of states in the list is not particularly
important, but should be chosen for convenience and clarity (including transcribing bits into to K-maps, for

example).
driver’s door other doors alarm on
meaning state 5150 D R A
vehicle locked LOCKED 00 0 0 0
driver door unlocked DRIVER 10 1 0 0
all doors unlocked UNLOCKED 11 1 1 0
alarm sounding ALARM 01 0 0 1
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We can also rewrite the next-state table in terms of bits. We use Gray code order on both axes, as these
orders make it more convenient to use K-maps. The values represented in this table are the next FSM
state given the current state S5y and the inputs U, L, and P. Our symbols for the next-state bits are S}
and Sar . The “4+” superscript is a common way of expressing the next value in a discrete series, here induced
by the use of clocked synchronous logic in implementing the FSM. In other words, S; is the value of S; in
the next clock cycle, and Sfr in an FSM implemented as a digital system is a Boolean expression based on
the current state and the inputs. For our example problem, we want to be able to write down expressions
for S{(S1, S0, U, L, P) and Sy (S1, So, U, L, P), as well as expressions for the output logic U(S1, So), L(S1, So),
and P(Sl, So)

current state ULP
5150 000 001 011 010 110 111 101 100
00 00 01 01 00 00 01 01 10
01 01 01 01 00 00 01 01 01
11 11 01 01 00 00 01 01 11
10 10 01 01 00 00 01 01 11

In the process of writing out the
next-state table, we have made de-
cisions for all of the questions that
we asked earlier regarding the ab-
stract state table. These decisions UL P=000,010,
are also reflected in the complete or 110
state transition diagram shown to
the right. The states have been
extended with state bits and out-
put bits, as S1S50/DRA. You
should recognize that we can also
leave some questions unanswered
by placing x’s (don’t cares) into
our table. However, you should
also understand at this point that
any implementation will produce
bits, not x’s, so we must be care-
ful not to allow arbitrary choices
unless any of the choices allowed
is indeed acceptable for our FSM’s
purpose. We will discuss this pro-
cess and the considerations neces-
sary as we cover more FSM design
examples.

UL P=000

ULP=100
uLp=owoor 110 | DRIVER
10/100

UL P=001,011,

LOCKED
00/000

UL P=001,011,
101, or 111

ULP=100

UL P=010
or 110

UL P=000
or 100

UNLOCKED
11/110

ULP=001,011,101, or 111

UL P=000,001,011,
111,101, or 100

We have deliberately omitted calculation of expressions for the next-state variables S;~ and Sar , and for the
outputs U, L, and P. We expect that you are able to do so from the detailed state table above, and may
assign such an exercise as part of your homework.

Synchronous Counters

A counter is a clocked sequential circuit with a state diagram consisting of a single logical cycle. Not all
counters are synchronous. In other words, not all flip-flops in a counter are required to use the same clock
signal. A counter in which all flip-flops do utilize the same clock signal is called a synchronous counter.
Except for a brief introduction to other types of counters in the next section, our class focuses entirely on
clocked synchronous designs, including counters.
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The design of synchronous counter circuits is a fairly straightforward exercise
given the desired cycle of output patterns. The task can be more complex if
the internal state bits are allowed to differ from the output bits, so for now
we assume that output Z; is equal to internal bit S;. Note that distinction
between internal states and outputs is necessary if any output pattern appears

more than once in the desired cycle. ;;glrty
counter
The cycle of states shown to the right corresponds to the states of a 3-bit binary cycle

counter. The numbers in the states represent both internal state bits S2.51.S
and output bits Zs7Z; Z;. We transcribe this diagram into the next-state table
shown on the left below. We then write out K-maps for the next state bits S5,
Sfr , and Sar , as shown to the right, and use the K-maps to find expressions for
these variables in terms of the current state.

0 0 0 0 0 1 00 01 11 10 00 01 11 10 00 01 11 10
ofolol(1) o olo|f1) off1 of INo |01

o 0o 1]l0 1 o0 s, s, (1] o [1) N

o 1 o]0 1 1 D] 1) o |@ 1 ol(a) o2 1EVEIEIN!

0 1 1 1 0 0

1 8 (1) i (1) (1) Sy = 528180 + 8251 + 528 = S2® (515)

1 1 0 1 1 1 Sfr: S180 + 5150 =595

1 1 1]0 0 0 Sq = So =Sy @1

The first form of the expression for each next-state variable is taken directly from the corresponding K-map.
We have rewritten each expression to make the emerging pattern more obvious. We can also derive the pat-
tern intuitively by asking the following: given a binary counter in state Sy_1Sn—2...5;415;5-1...515,
when does S; change in the subsequent state? The answer, of course, is that S; changes when all of the bits
below S; are 1. Otherwise, S; remains the same in the next state. We thus write S’j S; @ (Sj—1...5150)
and 1mplement the counter as shown below for a 4-bit design. Note that the usual order of output blts along
the bottom is reversed in the figure, with the most significant bit at the right rather than the left.

a 4-bit synchronous binary counter with serial gating

e
—
]

CLK F

Zo Z1 Z2 Z3

The calculation of the left inputs to the XOR gates in the counter shown above is performed with a series of
two-input AND gates. Each of these gates AND’s another flip-flop value into the product. This approach,
called serial gating, implies that an N-bit counter requires more than N — 2 gate delays to settle into the
next state. An alternative approach, called parallel gating, calculates each input independently with a
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single logic gate, as shown below. The blue inputs to the AND gate for S3 highlight the difference from the
previous figure (note that the two approaches differ only for bits S3 and above). With parallel gating, the
fan-in of the gates (the number of inputs) and the fan-out of the flip-flop outputs (number of other gates
into which an output feeds) grow with the size of the counter. In practice, large counters use a combination
of these two approaches.

a 4-bit synchronous binary counter with parallel gating

e
—
]

CLK F

Zo Z1 Z2 Z3
Ripple Counters

A second class of counter drives some of its flip-flops with a clock signal and feeds flip-flop outputs into
the clock inputs of its remaining flip-flops, possibly through additional logic. Such a counter is called a
ripple counter, because the effect of a clock edge ripples through the flip-flops. The delay inherent to the
ripple effect, along with the complexity of ensuring that timing issues do not render the design unreliable,
are the major drawbacks of ripple counters. Compared with synchronous counters, however, ripple counters
consume less energy, and are sometimes used for devices with restricted energy supplies.

General ripple counters can be tricky because of timing issues, but certain types
are easy. Consider the design of binary ripple counter. The state diagram for
a 3-bit binary counter is replicated to the right. Looking at the states, notice

that the least-significant bit alternates with each state, while higher bits flip S—bit
whenever the next smaller bit (to the right) transitions from one to zero. To Colﬂﬁgr
take advantage of these properties, we use positive edge-triggered D flip-flops cycle

with their complemented (@) outputs wired back to their inputs. The clock
input is fed only into the first flip-flop, and the complemented output of each
flip-flop is also connected to the clock of the next.

An implementation of a 4-bit binary ripple a 4-bit binary ripple counter
counter appears to the right. The order of bits

in the figure matches the order used for our L > o L > o L > o L 5
synchronous binary counters: least significant S T S T S T S
on the left, most significant on the right. As CLK

you can see from the figure, the technique gen- ‘ ‘ ‘
eralizes to arbitrarily large binary ripple coun- Zo Z 22 Zs
ters, but the time required for the outputs to settle after a clock edge scales with the number of flip-flops in
the counter. On the other hand, an average of only two flip-flops see each clock edge (1 +1/2+1/4+...),
which reduces the power requirements.’

Ql
Ol
Q|
Ql

IRecall that flip-flops record the clock state internally. The logical activity required to record such state consumes energy.
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Beginning with the state 0000, at the rising clock edge, the left (Sp) flip-flop toggles to 1. The second (S7)
flip-flop sees this change as a falling clock edge and does nothing, leaving the counter in state 0001. When
the next rising clock edge arrives, the left flip-flop toggles back to 0, which the second flip-flop sees as a rising
clock edge, causing it to toggle to 1. The third (Ss2) flip-flop sees the second flip-flop’s change as a falling
edge and does nothing, and the state settles as 0010. We leave verification of the remainder of the cycle as
an exercise.

Timing Issues*

Ripple counters are a form of a more general strategy known as clock gating.? Clock gating uses logic to
control the visibility of a clock signal to flip-flops (or latches). Historically, digital system designers rarely
used clock gating techniques because of the complexity introduced for the circuit designers, who must ensure
that clock edges are delivered with little skew along a dynamically changing set of paths to flip-flops. Today,
however, the power benefits of hiding the clock signal from flip-flops have made clock gating an attractive
strategy. Nevertheless, digital logic designers and computer architects still almost never use clock gating
strategies directly. In most of the industry, CAD tools insert logic for clock gating automatically. A handful
of companies (such as Intel and Apple/Samsung) design custom circuits rather than relying on CAD tools
to synthesize hardware designs from standard libraries of elements. In these companies, clock gating is used
widely by the circuit design teams, and some input is occasionally necessary from the higher-level designers.

More aggressive gating strategies are also used in modern designs, but these usually require more time to
transition between the on and off states and can be more difficult to get right automatically (with the tools),
hence hardware designers may need to provide high-level information about their designs. A flip-flop that
does not see any change in its clock input still has connections to high voltage and ground, and thus allows
a small amount of leakage current. In contrast, with power gating, the voltage difference is removed,
and the circuit uses no power at all. Power gating can be tricky—as you know, for example, when you turn
the power on, you need to make sure that each latch settles into a stable state. Latches may need to be
initialized to guarantee that they settle, which requires time after the power is restored.

If you want a deeper understanding of gating issues, take ECE482, Digital Integrated Circuit Design, or
ECEBH27, System-on-a-Chip Design.

Machine Models

Before we dive fully into FSM design, we must point out that we have placed a somewhat artificial restriction
on the types of FSMs that we use in our course. Historically, this restriction was given a name, and machines
of the type that we have discussed are called Moore machines. However, outside of introductory classes,
almost no one cares about this name, nor about the name for the more general model used almost universally
in hardware design, Mealy machines.

What is the difference? In a Moore machine, outputs depend only on the internal state bits of the FSM
(the values stored in the flip-flops). In a Mealy machine, outputs may be expressed as functions both
of internal state and FSM inputs. As we illustrate shortly, the benefit of using input signals to calculate
outputs (the Mealy machine model) is that input bits effectively serve as additional system state, which
means that the number of internal state bits can be reduced. The disadvantage of including input signals in
the expressions for output signals is that timing characteristics of input signals may not be known, whereas
an FSM designer may want to guarantee certain timing characteristics for output signals.

In practice, when such timing guarantees are needed, the designer simply adds state to the FSM to accom-
modate the need, and the problem is solved. The coin-counting FSM that we designed for our class’ lab
assignments, for example, required that we use a Moore machine model to avoid sending the servo controlling
the coin’s path an output pulse that was too short to enforce the FSM’s decision about which way to send
the coin. By adding more states to the FSM, we were able to hold the servo in place, as desired.

2Fall 2012 students: This part may seem a little redundant, but we’re going to remove the earlier mention of clock gating in
future semesters.
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Why are we protecting you from the model used in practice? First, timing issues add complexity to a topic
that is complex enough for an introductory course. And, second, most software FSMs are Moore machines,
so the abstraction is a useful one in that context, too.

In many design contexts, the timing issues implied by a Mealy model can be relatively simple to manage.
When working in a single clock domain, all of the input signals come from flip-flops in the same domain, and
are thus stable for most of the clock cycle. Only rarely does one need to keep additional state to improve
timing characteristics in these contexts. In contrast, when interacting across clock domains, more care is
sometimes needed to ensure correct behavior.

We now illustrate the state reduction benefit of the Mealy machine model with a simple example, an FSM
that recognizes the pattern of a 0 followed by a 1 on a single input and outputs a 1 when it observes the
pattern. As already mentioned, Mealy machines often require fewer flip-flops. Intuitively, the number of
combinations of states and inputs is greater than the number of combinations of states alone, and allowing
a function to depend on inputs reduces the number of internal states needed.

A Mealy implementation of the FSM appears on the left below, and an example timing diagram illustrating
the FSM’s behavior is shown on the right. The machine shown below occupies state A when the last bit
seen was a 0, and state B when the last bit seen was a 1. Notice that the transition arcs in the state
diagram are labeled with two values instead of one. Since outputs can depend on input values as well as
state, transitions in a Mealy machine are labeled with input/output combinations, while states are labeled
only with their internal bits (or just their names, as shown below). Labeling states with outputs does not
make sense for a Mealy machine, since outputs may vary with inputs. Notice that the outputs indicated on
any given transition hold only until that transition is taken (at the rising clock edge), as is apparent in the
timing diagram. When inputs are asynchronous, that is, not driven by the same clock signal, output pulses
from a Mealy machine can be arbitrarily short, which can lead to problems.
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For a Moore machine, we must create a special state in which the output is high. Doing so requires that we
split state B into two states, a state C in which the last two bits seen were 01, and a state D in which the
last two bits seen were 11. Only state C generates output 1. State D also becomes the starting state for the
new state machine. The state diagram on the left below illustrates the changes, using the transition diagram
style that we introduced earlier to represent Moore machines. Notice in the associated timing diagram that
the output pulse lasts a full clock cycle.
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