
c©2012 Steven S. Lumetta. All rights reserved. 39

ECE199JL: Introduction to Computer Engineering Fall 2012

Notes Set 2.7

Registers

This set of notes introduces registers, an abstraction used for storage of groups of bits in digital systems.
We introduce some terminology used to describe aspects of register design and illustrate the idea of a shift
register. The registers shown here are important abstractions for digital system design. In the Fall 2012

offering of our course, we will cover this material on the third midterm.

Registers

A register is a storage element composed from one or more
flip-flops operating on a common clock. In addition to the flip-
flops, most registers include logic to control the bits stored by
the register. For example, the D flip-flops described previously
copy their inputs at the rising edge of each clock cycle, dis-
carding whatever bits they have stored during that cycle. To
enable a flip-flop to retain its value, we might try to hide the
rising edge of the clock from the flip-flop, as shown to the right.

The LOAD input controls the clock signals through a method
known as clock gating. When LOAD is high, the circuit
reduces to a regular D flip-flop. When LOAD is low, the flip-

c

Q

CLK

IN D

LOAD

IN
LOAD

Q
CLK

c
specious falling edge

(has no effect)
specious rising edge
(causes incorrect load)

incorrect output value

flop clock input, c, is held high, and the flip-flop stores its current value. The problems with clock gating are
twofold. First, adding logic to the clock path introduces clock skew, which may cause timing problems later
in the development process (or, worse, in future projects that use your circuits as components). Second, in
the design shown above, the LOAD signal can only be lowered while the clock is high to prevent spurious
rising edges from causing incorrect behavior, as shown in the timing diagram.

A better approach is to add a feedback loop from the flip-flop’s
output, as shown in the figure to the right. When LOAD is low,
the upper AND gate selects the feedback line, and the register
reloads its current value. When LOAD is high, the lower AND
gate selects the IN input, and the register loads a new value.
We will generalize this type of selection structure, known as a
multiplexer, later in our course. The result is similar to a gated
D latch with distinct write enable and clock lines.

QIN
CLK

D

LOAD

We can use this extended flip-flop as
a bit slice for a multi-bit register. A
four-bit register of this type is shown to
the right. Four data lines—one for each
bit—enter the registers from the top of
the figure. When LOAD is low, the logic
copies each flip-flop’s value back to its in-
put, and the IN input lines are ignored.
When LOAD is high, the logic forwards
each IN line to the corresponding flip-
flop’s D input, allowing the register to
load the new 4-bit value. The use of one
input line per bit to load a multi-bit reg-
ister in a single cycle is termed a parallel
load.

3 0

01

12

23

Q Q

ININ

QQ

ININ

CLK

DDDD

LOAD



40 c©2012 Steven S. Lumetta. All rights reserved.

Shift Registers

Certain types of registers include logic
to manipulate data held within the reg-
ister. A shift register is an important
example of this type. The simplest
shift register is a series of D flip-flops,
with the output of each attached to
the input of the next, as shown to the

3 2 1 0

CLK

SI SO

Q Q Q Q

D D D D

right. In the circuit shown, a serial input SI accepts a single bit of data per cycle and delivers the bit four
cycles later to a serial output SO. Shift registers serve many purposes in modern systems, from the obvious
uses of providing a fixed delay and performing bit shifts for processor arithmetic to rate matching between
components and reducing the pin count on programmable logic devices such as field programmable gate
arrays (FPGAs), the modern form of the programmable logic array mentioned in the textbook.

An example helps to illustrate the rate matching problem: historical I/O buses used fairly slow clocks, as they
had to drive signals and be arbitrated over relatively long distances. The Peripheral Control Interconnect
(PCI) standard, for example, provided for 33 and 66 MHz bus speeds. To provide adequate data rates, such
buses use many wires in parallel, either 32 or 64 in the case of PCI. In contrast, a Gigabit Ethernet (local
area network) signal travelling over a fiber is clocked at 1.25 GHz, but sends only one bit per cycle. Several
layers of shift registers sit between the fiber and the I/O bus to mediate between the slow, highly parallel
signals that travel over the I/O bus and the fast, serial signals that travel over the fiber. The latest variant
of PCI, PCIe (e for “express”), uses serial lines at much higher clock rates.

Returning to the figure above, imagine that the outputs Qi feed into logic clocked at 1/4th the rate of the
shift register (and suitably synchronized). Every four cycles, the flip-flops fill up with another four bits, at
which point the outputs are read in parallel. The shift register shown can thus serve to transform serial
data to 4-bit-parallel data at one-quarter the clock speed. Unlike the registers discussed earlier, the shift
register above does not support parallel load, which prevents it from transforming a slow, parallel stream
of data into a high-speed serial stream. The use of serial load requires N cycles for an N-bit register, but
can reduce the number of wires needed
to support the operation of the shift reg-
ister. How would you add support for
parallel load? How many additional in-
puts would be necessary?

The shift register shown above is also in-
capable of storing a value rather than
continuously shifting. The addition of
the same structure that we used to con-
trol register loading can be applied to
control shifting, as shown to the right. 3 012Q QQQ

CLK

DDDD

SHIFT

SI SO

Through the use of
more complex input
logic, we can construct
a shift register with ad-
ditional functionality.
The bit slice shown to
the right allows us to
build a bidirectional

shift register with
parallel load capa-
bility and the ability
to retain its value

0

1

i i−1i+1

i

C

C
IN QQ

Q

CLK

D

C1 C0 meaning
0 0 retain current value
0 1 shift left (low to high)
1 0 load new value (from IN)
1 1 shift right (high to low)

indefinitely. The two control inputs, C1 and C0, make use of a representation that we have chosen for the
four operations supported by our shift register, as shown in the table to the far right.



c©2012 Steven S. Lumetta. All rights reserved. 41

The bit slice allows us
to build N -bit shift reg-
isters by replicating the
slice and adding a fixed
amount of “glue logic”
(for example, the SO
output logic). The fig-
ure to the right repre-
sents a 4-bit bidirectional
shift register constructed
in this way.

03 2 1

IN3 IN2 IN1 IN0

QQ Q Q

C1
C0

i−1QiIN

1C

0C iQ

i−1QiIN

1C

0C iQ

i−1QiIN

1C

0C iQ

i−1QiIN

1C

0C iQ

bidirectional
shift register bit

bidirectional
shift register bit

bidirectional
shift register bit

bidirectional
shift register bit

SOCLK

SI

Qi+1 Qi+1 Qi+1 Qi+1

At each rising clock edge, the action specified by C1C0 is taken. When C1C0 = 00, the register holds its
current value, with the register value appearing on Q[3 : 0] and each flip-flop feeding its output back into
its input. For C1C0 = 01, the shift register shifts left: the serial input, SI, is fed into flip-flop 0, and Q3 is
passed to the serial output, SO. Similarly, when C1C0 = 11, the shift register shifts right: SI is fed into
flip-flop 3, and Q0 is passed to SO. Finally, the case C1C0 = 10 causes all flip-flops to accept new values
from IN [3 : 0], effecting a parallel load.

Several specialized shift operations are used to support data manipulation in modern processors (CPU’s).
Essentially, these specializations dictate the form of the glue logic for a shift register as well as the serial
input value. The simplest is a logical shift, for which SI and SO are hardwired to 0; incoming bits are
always 0. A cyclic shift takes SI and feeds it back into SO, forming a circle of register bits through which
the data bits cycle.

Finally, an arithmetic shift treats the shift register contents as a number in 2’s complement form. For
non-negative numbers and left shifts, an arithmetic shift is the same as a logical shift. When a negative
number is arithmetically shifted to the right, however, the sign bit is retained, resulting in a function similar
to division by two. The difference lies in the rounding direction. Division by two rounds towards zero in most
processors: −5/2 gives −2. Arithmetic shift right rounds away from zero for negative numbers (and towards
zero for positive numbers): −5 >> 1 gives −3. We transform our previous shift register into one capable of
arithmetic shifts by eliminating the serial input and feeding the most significant bit, which represents the
sign in 2’s complement form, back into itself for right shifts, as shown below.

03 2 1

IN3 IN2 IN1 IN0

QQ Q Q

C1
C0

i−1QiIN

1C

0C iQ

i−1QiIN

1C

0C iQ

i−1QiIN

1C

0C iQ

i−1QiIN

1C

0C iQ

bidirectional
shift register bit

bidirectional
shift register bit

bidirectional
shift register bit

bidirectional
shift register bit

SOCLK

0
Qi+1 Qi+1 Qi+1 Qi+1


