ECE 290: Introduction to Computer Engineering Fall 2000
Notes from 29 November and 4 and 6 December Lectures

Instruction Set Architecture

Tradeoffs and design elements of instruction set architectures (ISA's) form the last component of our class. As you
perhaps recall, an ISA defines the interface between software and hardware, abstracting the capabilities of a computer’s
datapath and standardizing the format of instructions to utilize those capabilities. Successful ISA’s are rarely discarded,
as success implies the existence of large amounts of software built to use the ISA. Rather, they are extended, and their
original forms must be supported for decades (consider, for example, the IBM 360 and the Intel x86). Employing
sound design principles is thus imperative in an ISA.

Those of you who go on to take ECE 291, ECE 311, and/or ECE 312 will further develop the ideas presented here in
tandem with the computer architecture designs that we developed in the last few sets of notes.

Learning Objectives

This section outlines what you should expect to know, and what I'll expect you to know, after reading these notes. As |
regularly indicate during lecture, the lists in class are slightly abbreviated due to the limited space available on a slide;
the full list for this topic is given here.

Terminology and Circuits
¢ instruction format and fields
— mode field
fixed-length instructions
variable-length instructions
implicit operands
— general-purpose registers
— special-purpose registers: stack pointer (SP), program counter (PC),
processor status register (PSR) or processor status word (PSW), zero
— 3-address, 2-address, 1-address, and 0-address formats
e addressing architectures: memory-to-memory, load-store (register-to-register),
register-memory, accumulator, stack
e reduced instruction set computers (RISC)
e complex instruction set computers (CISC)
e instruction types
e stack: push, pop
e control flow operations: call, return, trap
e control flow conditions: comparisons, bit tests
e |/O:in, out
e procedure, system call: calling convention, callee saved, caller saved
e interrupt, exception
e handler
e vector table
e interrupt chaining
e spill code
e |/O: ports, independent I/O, memory-mapped I/0O

Tradeoffs
o fixed- versus variable-length instructions
e general-purpose versus special-purpose registers
¢ independent versus memory-mapped I/O

Comprehension/Integration
e Understand basic tradeoffs in ISA design.



Formats and Fields

The example architecture that we have developed in the last two months employs fixed-length instructions and a load-
store architecture, two aspects that help to reduce the design space to a manageable set of choices. In a general ISA
design, many other options exist for instruction formats.

Recall the idea of separating the bits of an instruction into (possibly non-contiguous) fields. One of the fields must
contain an opcode, which specifies the type of operation to be performed by the instruction. In our example architec-
ture, the opcode specified both the type of operation and the types of arguments to the operation. In a more general
architecture, many addressing modes are possible for each operand (as you learned in section), and we can think of
the bits that specify the addressing mode as a separate field, knownrasdedield. With regard to our example
architecture, the first bit of the ALU/shift operations can be called a mode bit: when the bit has value 0, the instruction
uses register-to-register mode; when the bit has value 1, the instruction uses immediate mode.

Several questions must be answered in order to define the possible instruction formats for an ISA. First, are instructions
fixed-length or variable-length? Second, how many addresses are needed for each instruction, and how many of the
addresses can be memory addresses? Finally, what forms of addresses are possible for each.gprihntemory
addresses or only limited offsets relative to a register?

The answer to the first question depends on many factors, but several clear advantages exist for bothFaxesavers.
length instructions are easy to fetch and decode. A processor knows in advance how many bits must be fetched to
fetch a full instruction; fetching the opcode and mode fields in order to decide how many more bits are necessary to
complete the instruction often takes more than one cycle, as did the two-word instructions in our example architecture.
Fixing the time necessary for instruction fetch also simplifies pipelining. Finally, fixed-length instructions simplify
the datapath by restricting instructions to the size of the bus and always fetching properly aligned instructions. As
an example of this simplification, note that our 16-bit example architecture did not need to support addressing for
individual bytes, only 16-bit words.

Variable-length instructions also have benefits, however. Variable-length encodings allow more efficient encodings,
saving both memory and disk space. A register transfer operation, for example, clearly requires fewer bits than addition
of values at two direct memory addresses for storage at a third. Fixed-length instructions must be fixed at the length
of the longest possible instruction, whereas variable-length instructions can use lengths appropriate to each mode.
The same tradeoff has another form in the sense that fixed-length ISA's typically eliminate many addressing modes in
order to limit the size of the instructions. Variable-length instructions thus allow more flexibility; indeed, extensions

to a variable-length ISA can incorporate new addressing modes that require longer instructions without affecting the
original ISA.

Moving to the last of the three questions posed for instruction format definition, we explore a range of answers devel-
oped over the last few decades. Answers are usually chosen based on the number of bits necessary, and we use this
metric to organize the possibilities. The figure below separates approaches into two dimensions: the vertical dimen-
sion divides addressing into registers and memory, and the horizontal dimension into varieties within each type.
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As a register file contains fewer registers than a memory does words, the use of register operands rather than memory
addresses reduces the number of bits required to specify an operand. Our example architecture used only register
operands to stay within the limit imposed by the decision to use only 16-bit instructions. Both register and memory
addresses, however, admit a wide range of implementations.

Implicit operands of either type require no additional bits for the implicit address. A typical procedure call instruction,
for example, pushes a return address onto the stack, but the stack pointer can be named implicitly, without the use of
bits in the instruction beyond the opcode bits necessary to specify a procedure call. Similarly, memory addresses can be



implicitly equated to other memory addresses; an increment instruction operating on a memory address, for example,
implicitly writes the result back to the same address. The opposite extreme provides full addressing capabilities, either
to any register in the register file or to any address in the memory. As addressing decisions are usually made for classes
of instructions rather than individual operations, | have used the gemeral-purpose registergo indicate that the
registers are used in any operation.

Special-purpose registersin contrast, split the register file and allow only certain registers to be used in each oper-
ation. For example, the Motorola 680x0 series, used until recently in Apple Macintosh computers, provides distinct
sets of address and data registers. Loads and stores use the address registers; ALSU operations use the data registers.
As a result, each instruction selects from a smaller set of registers and thus requires fewer bits in the instruction to
name the register for use.

As full memory addresses require many more bits than full register addresses, a wider range of techniques has been
employed to reduce the length. “Zero page” addresses, as defined in the 6510 (6502) ISA used by Commodore
PET’s} C64's! and VIC 20’s, prefixed a one-byte address with a zero byte, allowing shorter instructions when
memory addresses fell within the first 256 memory locations. Assembly and machine language programmers made
heavy use of these locations to produce shorter programs.

Relative addressing appeared in the context of control flow instructions of our example architecture, but appears in
many modern architectures as well. The Alpha, for example, has a relative form of procedure call with a 21-bit offset
(plus or minus a megabyte). The x86 architecture has a “short” form of branch instructions that uses an 8-bit offset.

Segmented memory is a form of relative addressing that uses a register (usually implicit) to provide the high bits of
an address and an explicit memory address (or another register) to provide the low bits. In the x86 architecture, for
example, 20-bit addresses are found by adding a 16-bit segment register extended with four zero bits to a 16-bit offset.

Addressing Architectures

One question remains for the definition of instruction formats: how many addresses are needed for each instruction,
and how many of the addresses can be memory addresses? The first part of this question usually ranges from zero
to three, and is very rarely allowed to go beyond three. The answer to the second part determaclelsetbsing
architecture implemented by an ISA. We now illustrate the tradeoffs between five distinct addressing architectures
through the use of a running example, the assigniert AB + C/D.

A binary operator requires two source operands and one destination operand, for a total of three addresses. The ADD
instruction, for example, has3addressformat:

ADD A,B,C . M[A] — M[B] + M[C]
or ADD R1,R2R3 Rl — R2+ R3

If all three addresses can be memory addresses, the ISA is dulbheadhary-to-memory architecture. Such archi-
tectures may have small register sets or even lack a register file completely. To implement the assignment, we assume
the availability of two memory locations, T1 and T2, for temporary storage:

MUL T1,AB : T1 — M[A]  M|[B]
DIV T2,C.D -T2 — MI[C]/M[D]
ADD X, T1,T2 ' X — M[T1] + M[T2]

The assignment requires only three instructions to implement, but each instruction contains three full memory ad-
dresses, and is thus very long.

At the other extreme is thiead-store architectureused by the ISA that we developed earlier. In a load-store archi-
tecture, only loads and stores can use memory addresses; all other operations use only registers. As most instructions
use only registers, this type of addressing architecture is also calbgyister-to-register architecture. The example
assignment translates to the code at the top of the next page, which assumes that R1, R2, and R3 are free for use.

*My computer in junior high school.
TMy computer in high school.



LD RLA ' R1 — M][A]

LD R2,B ' R2 — M|B]
MUL R1,R1,R2 Rl « Rlx R2
LD R2C 'R2 — M[C]
LD R3,D :R3 — M[D]

DIV R2,R2R3  ;R2 — R2/R3
ADD R1,R1,R2 Rl Rl+ R2
ST R1X M[X] — Rl

Eight instructions are necessary, but no instruction requires more than one full memory address, and several use only
register addresses, allowing the use of shorter instructions. The need to move data in and out of memory explicitly,
however, also requires a reasonably large register set, as is available in the Sparc, Alpha, and 1A-64 architectures.

Architectures that use other combinations of memory and register addresses with 3-address formats are not named.
Unary operators and transfer operators require only one source operand, thus can use a 2-addressdgprmat (
NOT A,B). Binary operations can also udeddressformat if one operand is implicit, as in the following instructions:

ADD AB . M[A] — M[A] + M[B]
or ADD R1,B 'Rl — R1+ M|[B]

The second instruction, in which one address is a register and the second is a memory address, reégistes a
memory architecture. As shown below, such architectures strike a balance between the two architectures just dis-
cussed.

LD RLA ' R1 — M[A]
MUL R1,B ' Rl — R1% M|B]
LD R2C 'R2 — MIC]

DIV R2D : R2 «— R2/M|D]
ADD R1,R2 ‘R1 — R1+ R2
ST R1X M[X] — R1

The assignment requires six instructions using at most one memory address each; like memory-to-memory architec-
tures, register-memory architectures use relatively few registers. Note that two-register operations are also allowed.
Intel's x86 ISA is a register-memory architecture.

Several ISAs of the pastused a special-purpose register called the accumulator for ALU operations, and are called
accumulator architectures The accumulator in such architectures is implicitly both a source and the destination for
any such operation, allowinglaaddressformat for instructions, as shown below.

ADD B ; ACC — ACC + M|[B]
or ST E yM[E] — ACC

Accumulator architectures strike the same balance as register-memory architectures, but use fewer registers. Note that
memory location X is used as a temporary storage location as well as the final storage location in the following code:

LD A . ACC — MI[A]

MUL B . ACC — ACC + M|B]
ST X - M[X] — ACC

LD C L ACC — MIC]

DIV D . ACC — ACC/MID]
ADD X L ACC — ACC + M[X]
ST X . M[X] — ACC

The last addressing architecture that we discuss is rarely used for modern general-purpose processors, but is perhaps
the most familiar to you because of its use in scientific and engineering calculators for the last fifteen to twenty
years. Astack architecture maintains a stack of values and draws all ALU operands from this stack, allowing these

tThe 6510/6502 as well, if memory serves, as the 8080, Z80, and Z8000, which used to drive parlor video games.



instructions to use @-addressformat. A special-purpose stack pointer (SP) register points to the top of the stack in
memory. and operations analogous to lopdish) and store §op) are provided to move values on and off the stack.
To implement our example assignment, we first transform it into postfix notation (also called reverse Polish notation):

AB*CD/+

The resulting sequence of symbols transforms on a one-to-one basis into instructions for a stack architecture:

PUSH A ;SP«— SP—1 M[SP]«— M[A] A

PUSH B ;SP«— SP—1,M[SP]«— M[B] B A

MUL : M[SP+1] « M[SP + 1]« M[SP],SP — SP+1  AB

PUSH C ;SP«— SP—1,M[SP]— M[C] C AB

PUSH D ;SP«— SP—1,M[SP]«— M[D] D C AB
DIV . M[SP + 1] « M[SP 4 1]/M[SP],SP — SP + 1 C/D AB

ADD  M[SP + 1] — M[SP + 1]+ M[SP],SP — SP+1  AB+C/D

POP X ;M[X]« M[SP],SP — SP+1

The values to the right are the values on the stack, starting with the top value on the left and progressing downwards,
after the completion of each instruction

Common Special-Purpose Registers
This section illustrates the uses of special-purpose registers through a few examples.

The stack pointer (SP) points to the top of the stack in memory. Most older architectures support push and pop
operations that implicitly use the stack pointer. Modern architectures assign a general-purpose register to be the stack
pointer and reference it explicitly, although an assembler may support instructions that appear to use implicit operands
but in fact translate to machine instructions with explicit reference to the register defined to be the SP.

The program counter (PC) points to the next instruction to be executed. Some modern architectures expose it as
a general-purpose register, although its distinct role in the implementation keeps such a model from becoming as
common as the use of a general-purpose register for the SP.

The processor status register (PSR)also known as therocessor status word (PSW)contains all status bits as

well as a mode bit indicating whether the processor is operating in user mode or privileged (operating system) mode.
Having a register with this information allows more general access than is possible solely through the use of control
flow instructions.

The zero register appears in modern architectures of the RISC variety (defined in the next section of these notes).
The register is read-only and serves both as a useful constant and as a destination for operations performed only for
their side-effectsd.g, setting status bits). The availability of a zero register also allows certain opcodes to serve
double duty. A register-to-register add instruction becomes a register move instruction when one source operand is
zero. Similarly, an immediate add instruction becomes an immediate load instruction when one source operand is zero.

Reduced Instruction Set Computers

By the mid-1980’s, the VAX architecture dominated the workstation and minicomputer markets, which included most
universities. Digital Equipment Corporation, the creator of the VAX, was second only to IBM in terms of computer
sales. VAXen, as the machines were called, used microprogrammed control units and supported numerous addressing
modes as well as very complex instructions ranging from “square root” to “find roots of polynomial equation.”

The impact of increasingly dense integrated circuit technology had begun to have its effect, however, and in view of
increasing processor clock speeds, more and more programmers were using high-level languages rather than writing
assembly code. Although assembly programmers often made use of the complex VAX instructions, compilers were
usually unable to recognize the corresponding high-level language constructs and thus were unable to make use of the
instructions.

Increasing density also led to rapid growth in memory sizes, to the point that researchers began to question the need for
variable-length instructions. Recall that variable-length instructions allow shorter codes by providing more efficient



instruction encodings. With the trend toward larger memories, code length was less important. The performance
advantage of fixed-length instructions, which simplifies the datapath and enables pipelining, on the other hand, was
very attractive.

Researchers leveraged these ideas, which had been floating around the research community (and had appeared in some
commercial architectures) to creazgluced instruction set computers or RISC machines. The competing VAXen
were labeledCISC machines, which stands foomplex instruction set computers

RISC machines employ fixed-length instructions and a load-store architecture, allowing only a few addressing modes
and small offsets. This combination of design decisions enables deep pipelines and multiple instruction issues in a
single cycle (termed superscalar implementations), and for years, RISC machines were viewed by many researchers
as the proper design for future ISA's. However, companies such as Intel soon learned to pipeline microoperations after
decoding instructions, and CISC architectures now offer competitive if not superior performance in comparison with
RISC machines. The VAXen are dead, of coursmving been replaced by the Alpha.

Procedure and System Calls

A procedure is a sequence of instructions that executes a particular task. Procedures are used as building blocks
for multiple, larger tasks. The concept of a procedure is fundamental to programming, and appears in some form in
every high-level language as well as in most low-level deslgi®r our purposes, the terms procedure, subroutine,
function, and method are synonymous, although they usually have slightly different meanings from the linguistic point
of view. Procedure calls are supported throegh andreturn control flow instructions. The first instruction in the

code below, for example, transfers control to the procedure “DoSomeWork,” which presumably does some work, then
returns control to the instruction following the call.

loop: CALL DoSomeWork
CMP R6,#1 ; compare return value in R6 to 1
BEQ loop ; keep doing work until R6 is not 1
DoSomeWork: - -- ; set R6 to 0 when all work is done, 1 otherwise
RETN

The procedure also places a return value in R6, which the instruction following the call compares with immediate
value 1. Until the two are not equal€., all work is done), the branch returns control to the call and executes the
procedure again.

As you may recall, the call and return use the stack pointer to keep track of nested calls. Sample RTL for these opera-
tions appears below.

calRTL SP«— SP -1 return RTL  PC «— M[SP)]
M[SP] « PC SP—SP+1
PC « procedure start

While an ISA provides the call and return instructions necessary to support procedures, it does not specify how
information is passed to or returned from a procedure. A standard for such decisions is usually developed and included
in descriptions of the architecture, however. Teadling conventionspecifies how information is passed between a

caller and a callee. In particular, it specifies the following: where arguments must be glaced,registers or in

specific stack memory locations; which registers can be used or changed by the procedure; and where any return value
must be placed.

The term “calling convention” is also used in the programming language community to describe the convention for
deciding what information is passed for a given call operation. For example, are variables passed by value, by pointers
to values, or in some other way? However, once the things to be sent are decided, the architectural calling convention
that we discuss in this class is used to determine where to put the data in order for the callee to be able to find it.

$Unless you talk with customer support employees, for whom no machine ever dies.
9The architecture that you used in the labs allowed limited use of procedures in its microprogram.



Calling conventions for architectures with large register sets typically pass arguments in regis-
ters, and nearly all conventions place the return value in a register. A calling convention also storage

for more

divides the register set inttaller savedandcallee savedegisters. Caller saved registers can be calls
modified arbitrarily by the called procedure, whereas any value in a callee saved register must $ie | storagefor

current

preserved. Similarly, before calling a procedure, a caller must preserve the values of any caller | procedure
saved registers that are needed after the call. Registers of both types usually saved on the stack |  retun
by the appropriate code (caller or callee). address

extra
arguments

A typical stack structure appears in the figure to the right. In preparation for a call, a calley, wved
first stores any caller saved registers on the stack. Arguments to the procedure to be callethare | vaues
pushed next. The procedure is called next, implicitly pushing the return address (the address’of | al

the instruction following the call instruction). Finally, the called procedure may allocate space stack
on the stack for storage of callee saved registers as well as local variables.

As an example, the following calling convention can be applied to our example architecture: the first three arguments
must be placed in RO through R2 (in order), with any remaining arguments on the stack; the return value must be
placed in R6; RO through R2 are caller saved, as is R6, while R3 through R5 are callee saved; R7 is used as the stack
pointer. The code fragments below use this calling convention to implement a procedure and a call of that procedure.

intadd3 (int n1, int n2, int n3§ add3: ADD RO,RO,R1
return (n1 + n2 + n3); ADD R6,R0,R2
} RETN
printf (“%d”, add3 (10, 20, 30)); PUSH R4 ; save the value in R4
LDI RO,#10 ; marshal arguments
LDl R1,#20
. LDI  R2,#30
by convention: CALL add3
nlisin RO MOV R1,R6 : return value becomes second argument
n2isinR1 LDI RO,“%d” :load a pointer to the string
ndisinRz2 CALL printf
return value is in R6 POP R4  restore R4

The add3 procedure takes three integers as arguments, adds them together, and returns the sum. The procedure is
called with the constants 10, 20, and 30, and the result is printed. By the calling convention, when the call is made,
RO must contain the value 10, R1 the value 20, and R2 the value 30. We assume that the caller wants to preserve the
value of R4, but does not care about R3 or R5. In the assembly language version on the right, R4 is first saved to the
stack, then the arguments are marshaled into position, and finally the call is made. The procedure itself needs no local
storage and does not change any callee saved registers, thus must simply add the numbers together and place the result
in R6. After add3 returns, its return value is moved from R6 to R1 in preparation for the call to printf. After loading a
pointer to the format string into RO, the second call is made, and R4 is restored, completing the translation.

System callsare almost identical to procedure calls. As with procedure calls, a calling convention is used: before
invoking a system call, arguments are marshaled into the appropriate registers or locations in the stack; after a system
call returns, any result appears in a pre-specified register. The calling convention used for system calls need not be
the same as that used for procedure calls. Rather than a call instruction, system calls are usually initiatedwith a
instruction, and system calls are also known as traps. With many architectures, a system call places the processor
in privileged or kernel mode, and the instructions that implement the call are considered to be part of the operating
system. The term system call arises from this fact.

Interrupts and Exceptions

Unexpected processor interruptions arise both from interactions between a processor and external devices and from
errors or unexpected behavior in the program being executed. Thértimupt is reserved for asynchronous inter-
ruptions generated by other devices, including disk drives, printers, network cards, video cards, keyboards, mice, and
any number of other possibilitieExceptionsoccur when a processor encounters an unexpected opcode or operand.



An undefined instruction, for example, gives rise to an exception, as does an attempt to divide by zero. Exceptions
usually cause the current program to terminate, although many operating systems will allow the program to catch the
exception and to handle it more intelligently. The table below summarizes the characteristics of the two types and
compares them to system calls.

type generated by example asynchronous unexpected
interrupt external device packet arrived at network cand yes yes
exception invalid opcode or operand divide by zero no yes
trap/system call deliberate, via trap instructiop print character to console no no

Interrupts occur asynchronously with respect to the program. Most designs only recognize interrupts between in-
structions,i.e., the presence of interrupts is checked only after completing an instruction rather than in every cycle.
In pipelined designs, however, instructions execute simultaneously, and the decision as to which instructions occur
“before” an interrupt and which occur “after” must be made by the processor. Exceptions are not asynchronous in the
sense that they occur for a particular instruction, thus no decision need be made as to instruction ordering. After deter-
mining which instructions were before an interrupt, a pipelined processor discards the state of any partially executed
instructions that occur “after” the interrupt and completes all instructions that occur “before.” The terminated instruc-
tions are simply restarted after the interrupt completes. Handling the decision, the termination, and the completion,
however, significantly increases the design complexity of the system.

The code associated with an interrupt, an exception, or a system call is a form of procedure bahetes and is

found by looking up the interrupt number, exception number, or trap number in a table of functions czdietdra

table. Separate vector tables exist for each type (interrupts, exceptions, and system calls). Interrupts and exceptions
share a need to save all registers and status bits before execution of the corresponding handler code (and to restore
those values afterward). Generally, the values—including the status word register—are placed on the stack. With
system calls, saving and restoring any necessary state is part of the calling convention. A special return from interrupt
instruction is used to return control from the interrupt handler to the interrupted code; a similar instruction forces the
processor back into user mode when returning from a system call.

Interrupts are also interesting in the sense that typical computers often have many interrupt-generating devices but only
a few interrupts. Interrupts are prioritized by number, and only an interrupt with higher priority can interrupt another
interrupt. Interrupts with equal or lower priority are blocked while an interrupt executes. Some interrupts can also be
blocked in some architectures by setting bits in a special-purpose register called an interrupt mask. While an interrupt
number is masked, interrupts of that type are blocked, and can not occur.

As several devices may generate interrupts with the same interrupt number, interrupt handlecheamsokogether.

Each handler corresponds to a particular device. When an interrupt occurs, control is passed to the handler for the
first device, which accesses device registers to determine whether or not that device generated an interrupt. If it did,
the appropriate service is provided. If not, or after the service is complete, control is passed to the next handler in the

chain, which handles interrupts from the second device, and so forth until the last handler in the chain completes. At

this point, registers and processor state are restored and control is returned to the point at which the interrupt occurred.

Control Flow Conditions

Control flow instructions may change the PC, loading it with an address specified by the instruction. Although any
addressing mode can be supported, the most common specify an address directly in the instruction, use a register as
an address, or use an address relative to a register.

Unconditional control flow instructions typically provided by an ISA include procedure calls and returns, traps, and
jumps. Conditional control flow instructions are branches, and are logically based on status bits set by two types of
instructions:comparisonsandbit tests. Comparisons subtract one value from another to set the status bits, whereas
bit tests use an AND operation to check whether certain bits are set or not in a value.

Many older architectures, such as that used for your labs, implement status bits as special-purpose registers and
implicitly set them for certain instructions. A branch based on R2 being less or equal to R3 can then be written as
shown on the next page. The status bits are set by subtracting R3 from R2 with the function unit.



CMP R2,R3 R2< R3:CNZ «—110,R2=R3:CNZ «— 001,R2 > R3: CNZ « 000
BLE R1 1 ZXORC =1: PC «— R1

The status bits are not always implemented as special-purpose registers; instead, they may be kept in general-purpose
registers or not kept at all. For example, the Alpha ISA stores the results of comparisons in general-purpose registers,
and the same branch is instead implemented as follows:

CMPLE R4,R2,R3 R2<R3:R4+—1,R2>R3:R4+—0
BNE R4,R1 R4#0: PC — R1

Finally, status bits can be calculated, used, and discarded within a single instruction, in which case the branch is written
as follows:

BLE R1,R2,R3 R2 < R3: PC — R1

The three approaches have advantages and disadvantages similar to those discussed in the section on addressing archi-
tectures: the first has the shortest instructions, the second is the most general and simplest to implement, and the third
requires the fewest instructions.

Stack Operations

Two types of stack operations are commonly supported. Push and pop are the basic operations in many older architec-
tures, and values can be placed upon or removed from the stack using these instructions. In more modern architectures,
in which the SP becomes a general-purpose register, push and pop are replaced with indexed loads argl, stores,
loads and stores using the stack pointer and an offset as the address for the memory operation. Stack updates are per-
formed using the ALU, subtracting and adding immediate values from the SP as necessary to allocate and deallocate
local storage.

Stack operations serve three purposes in a typical architecture. The first is to support procedure calls, as illustrated in
a previous section. The second is to provide temporary storage during interrupts, as mentioned earlier.

The third use of stack operations is to suppsmitl code generated by compilers. Compilers first translate high-level
languages into an intermediate representation much like assembly code but with an extremely large (theoretically infi-
nite) register set. The final translation step translates this intermediate representation into assembly code for the target
architecture, assigning architectural registers as necessary. However, as real ISA's support only a finite number of
registers, the compiler must occasionally spill values into memory. For example, if ten values are in use at some point
in the code, but the architecture has only eight registers, spill code must be generated to store the remaining two values
on the stack and to restore them when they are needed.

1/O

As a final topic for the course, we now consider how a processor connects to other devices to allow input and output.
We have already discussed interrupts, which are a special form of I/O in which only the signal requesting attention is
conveyed to the processor. Communication of data occurs through instructions similar to loads and stores. A processor
is designed with a number ¢fO ports—usually read-only or write-only registers to which devices can be attached
with opposite semantics. Thatis, a port is usually written by the processor and read by a device or written by a device
and read by the processor.

The question of exactly how I/O ports are accessed is an interesting one. One option is to create special instructions,
such as thén andout instructions of the x86 architecture. Port addresses can then be specified in the same way that
memory addresses are specified, but use a distinct address space. Just as two sets of special-purpose registers can be
separated by the ISA, such amdependent I/O system separates I/O ports from memory addresses by using distinct
instructions for each class of operation.

Alternatively, device registers can be accessed using the same load and store instructions as are used to access memory.
This approach, known asemory-mapped I/O, requires no new instructions for I/O, but demands that a region of the
memory address space be set aside for I/0. The memory words with those addresses, if they exist, can not be accessed
during normal processor operations.



