
10 c©2012 Steven S. Lumetta. All rights reserved.

ECE199JL: Introduction to Computer Engineering Fall 2012

Notes Set 1.4

Logic Operations

This set of notes briefly describes a generalization to truth tables, then introduces Boolean logic operations
as well as notational conventions and tools that we use to express general functions on bits. We illustrate
how logic operations enable us to express functions such as overflow conditions concisely, then show by con-
struction that a small number of logic operations suffices to describe any operation on any number of bits.
We close by discussing a few implications and examples.

Truth Tables

You have seen the basic form of truth tables in the textbook and in class. Over
the semester, we will introduce several extensions to the basic concept, mostly with
the goal of reducing the amount of writing necessary when using truth tables. For
example, the truth table to the right uses two generalizations to show the carry
out C (also the unsigned overflow indicator) and the sum S produced by adding
two 2-bit unsigned numbers. First, rather than writing each input bit separately,
we have grouped pairs of input bits into the numbers A and B. Second, we have
defined multiple output columns so as to include both bits of S as well as C in the
same table. Finally, we have grouped the two bits of S into one column.

Keep in mind as you write truth tables that only rarely does an operation correspond
to a simple and familiar process such as addition of base 2 numbers. We had to
choose the unsigned and 2’s complement representations carefully to allow ourselves
to take advantage of a familiar process. In general, for each line of a truth table for
an operation, you may need to make use of the input representation to identify the
input values, calculate the operation’s result as a value, and then translate the value
back into the correct bit pattern using the output representation. Signed magni-
tude addition, for example, does not always correspond to base 2 addition: when the

inputs outputs
A B C S

00 00 0 00
00 01 0 01
00 10 0 10
00 11 0 11
01 00 0 01
01 01 0 10
01 10 0 11
01 11 1 00
10 00 0 10
10 01 0 11
10 10 1 00
10 11 1 01
11 00 0 11
11 01 1 00
11 10 1 01
11 11 1 10

signs of the two input operands differ, one should instead use base 2 subtraction. For other operations or
representations, base 2 arithmetic may have no relevance at all.

Boolean Logic Operations

In the middle of the 19th century, George Boole introduced a set of logic operations that are today known as
Boolean logic (also as Boolean algebra). These operations today form one of the lowest abstraction levels
in digital systems, and an understanding of their meaning and use is critical to the effective development of
both hardware and software.

You have probably seen these functions many times already in your education—perhaps first in set-theoretic
form as Venn diagrams. However, given the use of common English words with different meanings to name
some of the functions, and the sometimes confusing associations made even by engineering educators, we
want to provide you with a concise set of definitions that generalizes correctly to more than two operands.
You may have learned these functions based on truth values (true and false), but we define them based on
bits, with 1 representing true and 0 representing false.

Table 1 on the next page lists logic operations. The first column in the table lists the name of each function.
The second provides a fairly complete set of the notations that you are likely to encounter for each function,
including both the forms used in engineering and those used in mathematics. The third column defines the
function’s value for two or more input operands (except for NOT, which operates on a single value). The last
column shows the form generally used in logic schematics/diagrams and mentions the important features
used in distinguishing each function (in pictorial form usually called a gate, in reference to common physical
implementations) from the others.



c©2012 Steven S. Lumetta. All rights reserved. 11

Function Notation Explanation Schematic

AND

A AND B

AB

A ·B
A×B

A ∧B

the “all” function: result is 1 iff
all input operands are equal to 1

A

B
AB

flat input, round output

OR
A OR B

A+B

A ∨B

the “any” function: result is 1 iff
any input operand is equal to 1

B

A
A+B

round input, pointed output

NOT

NOT A

A′

A

¬A

logical complement/negation:
NOT 0 is 1, and NOT 1 is 0

A A

triangle and circle

XOR
exclusive OR

A XOR B

A⊕B

the “odd” function: result is 1 iff an odd
number of input operands are equal to 1

B

A
A XOR B

OR with two lines
on input side

English
“or”

A, B, or C
the “one of” function: result is 1 iff exactly
one of the input operands is equal to 1

(not used)

Table 1: Boolean logic operations, notation, definitions, and symbols.

The first function of importance is AND. Think of AND as the “all” function: given a set of input values
as operands, AND evaluates to 1 if and only if all of the input values are 1. The first notation line simply
uses the name of the function. In Boolean algebra, AND is typically represented as multiplication, and the
middle three forms reflect various ways in which we write multiplication. The last notational variant is from
mathematics, where the AND function is formally called conjunction.

The next function of importance is OR. Think of OR as the “any” function: given a set of input values
as operands, OR evaluates to 1 if and only if any of the input values is 1. The actual number of input
values equal to 1 only matters in the sense of whether it is at least one. The notation for OR is organized
in the same way as for AND, with the function name at the top, the algebraic variant that we will use in
class—in this case addition—in the middle, and the mathematics variant, in this case called disjunction,
at the bottom.

The definition of Boolean OR is not the same as our use of the word “or” in English. For example, if you
are fortunate enough to enjoy a meal on a plane, you might be offered several choices: “Would you like the
chicken, the beef, or the vegetarian lasagna today?” Unacceptable answers to this English question include:
“Yes,” “Chicken and lasagna,” and any other combination that involves more than a single choice!

You may have noticed that we might have instead mentioned that AND evaluates to 0 if any input value
is 0, and that OR evaluates to 0 if all input values are 0. These relationships reflect a mathematical duality
underlying Boolean logic that has important practical value in terms of making it easier for humans to digest
complex logic expressions. We will talk more about duality later in the course, but you should learn some
of the practical value now: if you are trying to evaluate an AND function, look for an input with value 0;
if you are trying to evaluate an OR function, look for an input with value 1. If you find such an input, you
know the function’s value without calculating any other input values.

We next consider the logical complement function, NOT. The NOT function is also called negation.
Unlike our first two functions, NOT accepts only a single operand, and reverses its value, turning 0 into 1
and 1 into 0. The notation follows the same pattern: a version using the function name at the top, followed
by two variants used in Boolean algebra, and finally the version frequently used in mathematics. For the
NOT gate, or inverter, the circle is actually the important part: the triangle by itself merely copies the
input. You will see the small circle added to other gates on both inputs and outputs; in both cases the circle
implies a NOT function.



12 c©2012 Steven S. Lumetta. All rights reserved.

Last among the Boolean logic functions, we have the XOR, or exclusive OR function. Think of XOR as
the “odd” function: given a set of input values as operands, XOR evaluates to 1 if and only if an odd number

of the input values are 1. Only two variants of XOR notation are given: the first using the function name,
and the second used with Boolean algebra. Mathematics rarely uses this function.

Finally, we have included the meaning of the word “or” in English as a separate function entry to enable you
to compare that meaning with the Boolean logic functions easily. Note that many people refer to English’

use of the word “or” as “exclusive” because one
true value excludes all others from being true. Do
not let this human language ambiguity confuse you
about XOR! For all logic design purposes, XOR is

the odd function.

The truth table to the right provides values il-
lustrating these functions operating on three in-
puts. The AND, OR, and XOR functions are all
associative—(A op B) op C = A op (B op C)—
and commutative—A op B = B op A, as you
may have already realized from their definitions.

inputs outputs
A B C ABC A+B + C A A⊕B ⊕ C

0 0 0 0 0 1 0
0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 1
1 0 1 0 1 0 0
1 1 0 0 1 0 0
1 1 1 1 1 0 1

Overflow as Logic Expressions

In the last set of notes, we discussed overflow conditions for unsigned and 2’s complement representations.
Let’s use Boolean logic to express these conditions.

We begin with addition of two 1-bit unsigned numbers. Call the two input bits A0 and B0. If you write a
truth table for this operation, you’ll notice that overflow occurs only when all (two) bits are 1. If either bit
is 0, the sum can’t exceed 1, so overflow cannot occur. In other words, overflow in this case can be written
using an AND operation:

A0B0

The truth table for adding two 2-bit unsigned numbers is four times as large, and seeing the structure may
be difficult. One way of writing the expression for overflow of 2-bit unsigned addition is as follows:

A1B1 + (A1 +B1)A0B0

This expression is slightly trickier to understand. Think about the place value of the bits. If both of the most
significant bits—those with place value 2—are 1, we have an overflow, just as in the case of 1-bit addition.
The A1B1 term represents this case. We also have an overflow if one or both (the OR) of the most significant
bits are 1 and the sum of the two next significant bits—in this case those with place value 1—generates a
carry.

The truth table for adding two 3-bit unsigned numbers is probably not something that you want to write
out. Fortunately, a pattern should start to become clear with the following expression:

A2B2 + (A2 +B2)A1B1 + (A2 +B2)(A1 +B1)A0B0

In the 2-bit case, we mentioned the “most significant bit” and the “next most significant bit” to help you see
the pattern. The same reasoning describes the first two product terms in our overflow expression for 3-bit
unsigned addition (but the place values are 4 for the most significant bit and 2 for the next most significant
bit). The last term represents the overflow case in which the two least significant bits generate a carry which
then propagates up through all of the other bits because at least one of the two bits in every position is a 1.



c©2012 Steven S. Lumetta. All rights reserved. 13

The overflow condition for addition of two N -bit 2’s complement numbers
can be written fairly concisely in terms of the first bits of the two numbers
and the first bit of the sum. Recall that overflow in this case depends only on
whether the three numbers are negative or non-negative, which is given by

AN−1AN−2. . .A2A1A0

+ BN−1BN−2. . .B2B1B0

SN−1 SN−2 . . .S2 S1 S0

the most significant bit. Given the bit names as shown to the right, we can write the overflow condition as
follows:

AN−1 BN−1 SN−1 +AN−1 BN−1 SN−1

The overflow condition does of course depend on all of the bits in the two numbers being added. In the
expression above, we have simplified the form by using SN−1. But SN−1 depends on the bits AN−1 and BN−1

as well as the carry out of bit (N − 2).

Later in this set of notes, we present a technique with which you can derive an expression for an arbitrary
Boolean logic function. As an exercise, after you have finished reading these notes, try using that technique
to derive an overflow expression for addition of two N -bit 2’s complement numbers based on AN−1, BN−1,
and the carry out of bit (N − 2) (and into bit (N − 1)), which we might call CN−1. You might then cal-
culate CN−1 in terms of the rest of the bits of A and B using the expressions for unsigned overflow just
discussed. In the next month or so, you will learn how to derive more compact expressions yourself from
truth tables or other representations of Boolean logic functions.

Logical Completeness

Why do we feel that such a short list of functions is enough? If you think about the number of possible
functions on N bits, you might think that we need many more functions to be able to manipulate bits.
With 10 bits, for example, there are 21024 such functions. Obviously, some of them have never been used in
any computer system, but maybe we should define at least a few more logic operations? In fact, we do not
even need XOR. The functions AND, OR, and NOT are sufficient, even if we only allow two input operands
for AND and OR!

The theorem below captures this idea, called logical completeness. In this case, we claim that the set of
functions {AND, OR, NOT} is sufficient to express any operation on any finite number of variables, where
each variable is a bit.

Theorem: Given enough 2-input AND, 2-input OR, and 1-input NOT functions, one can express any
Boolean logic function on any finite number of variables.

The proof of our theorem is by construction. In other words, we show a systematic approach for trans-
forming an arbitrary Boolean logic function on an arbitrary number of variables into a form that uses only
AND, OR, and NOT functions on one or two operands. As a first step, we remove the restriction on the
number of inputs for the AND and OR functions. For this purpose, we state and prove two lemmas, which
are simpler theorems used to support the proof of a main theorem.

Lemma 1: Given enough 2-input AND functions, one can express an AND function on any finite number
of variables.

Proof: We prove the Lemma by induction.1 Denote the number of inputs to a particular AND function
by N .

The base case is N = 2. Such an AND function is given.

To complete the proof, we need only show that, given any
number of AND functions with up to N inputs, we can ex-
press an AND function with N +1 inputs. To do so, we need
merely use one 2-input AND function to join together the
result of an N -input AND function with an additional input,
as illustrated to the right.

input N
...

AND of N+1 inputs
input N+1

input 1

1We assume that you have seen proof by induction previously.



14 c©2012 Steven S. Lumetta. All rights reserved.

Lemma 2: Given enough 2-input OR functions, one can express an OR function on any finite number of
variables.

Proof: The proof of Lemma 2 is identical in structure to that of Lemma 1, but uses OR functions instead
of AND functions.

Let’s now consider a small subset of functions on N variables. For any such function, you can write out the
truth table for the function. The output of a logic function is just a bit, either a 0 or a 1. Let’s consider the
set of functions on N variables that produce a 1 for exactly one combination of the N variables. In other
words, if you were to write out the truth table for such a function, exactly one row in the truth table would
have output value 1, while all other rows had output value 0.

Lemma 3: Given enough AND functions and 1-input NOT functions, one can express any Boolean logic
function that produces a 1 for exactly one combination of any finite number of variables.

Proof: The proof of Lemma 3 is by construction. Let N be the number of variables on which the function
operates. We construct a minterm on these N variables, which is an AND operation on each variable or its
complement. The minterm is specified by looking at the unique combination of variable values that produces
a 1 result for the function. Each variable that must be a 1 is included as itself, while each variable that must
be a 0 is included as the variable’s complement (using a NOT function). The resulting minterm produces the
desired function exactly. When the variables all match the values for which the function should produce 1,
the inputs to the AND function are all 1, and the function produces 1. When any variable does not match
the value for which the function should produce 1, that variable (or its complement) acts as a 0 input to the
AND function, and the function produces a 0, as desired.

The table below shows all eight minterms for three variables.

inputs outputs

A B C A B C A B C A B C A B C A B C A B C A B C A B C

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

We are now ready to prove our theorem.

Proof (of Theorem): Any given function on N variables produces the value 1 for some set of combinations
of inputs. Let’s say that M such combinations produce 1. Note that M ≤ 2N . For each combination that
produces 1, we can use Lemma 1 to construct an N -input AND function. Then, using Lemma 3, we can
use as many as M NOT functions and the N -input AND function to construct a minterm for that input
combination. Finally, using Lemma 2, we can construct an M -input OR function and OR together all of
the minterms. The result of the OR is the desired function. If the function should produce a 1 for some
combination of inputs, that combination’s minterm provides a 1 input to the OR, which in turn produces a 1.
If a combination should produce a 0, its minterm does not appear in the OR; all other minterms produce 0
for that combination, and thus all inputs to the OR are 0 in such cases, and the OR produces 0, as desired.

The construction that we used to prove logical completeness does not necessarily help with efficient design
of logic functions. Think about some of the expressions that we discussed earlier in these notes for overflow
conditions. How many minterms do you need for N -bit unsigned overflow? A single Boolean logic function
can be expressed in many different ways, and learning how to develop an efficient implementation of a
function as well as how to determine whether two logic expressions are identical without actually writing
out truth tables are important engineering skills that you will start to learn in the coming months.



c©2012 Steven S. Lumetta. All rights reserved. 15

Implications of Logical Completeness

If logical completeness doesn’t really help us to engineer logic functions, why is the idea important? Think
back to the layers of abstraction and the implementation of bits from the first couple of lectures. Voltages
are real numbers, not bits. The device layer implementations of Boolean logic functions must abstract away

the analog properties of the physical system. Without such abstraction, we must think carefully about analog
issues such as noise every time we make use of a bit! Logical completeness assures us that no matter what
we want to do with bits, implementating a handful of operations correctly is enough to guarantee that we
never have to worry.

A second important value of logical completeness is as a tool in screening potential new technologies for
computers. If a new technology does not allow implementation of a logically complete set of functions, the
new technology is extremely unlikely to be successful in replacing the current one.

That said, {AND, OR, and NOT} is not the only logically complete set of functions. In fact, our current
complementary metal-oxide semiconductor (CMOS) technology, on which most of the computer industry is
now built, does not directly implement these functions, as you will see later in our class.

The functions that are implemented directly in CMOS are NAND
and NOR, which are abbreviations for AND followed by NOT and
OR followed by NOT, respectively. Truth tables for the two are
shown to the right.

Either of these functions by itself forms a logically complete set.
That is, both the set {NAND} and the set {NOR} are logically
complete. For now, we leave the proof of this claim to you. Re-

inputs outputs
AB A+B

A B A NAND B A NOR B

0 0 1 1
0 1 1 0
1 0 1 0
1 1 0 0

member that all you need to show is that you can implement any set known to be logically complete, so in
order to prove that {NAND} is logically complete (for example), you need only show that you can implement
AND, OR, and NOT using only NAND.

Examples and a Generalization

Let’s use our construction to solve a few examples. We begin with the functions that we illustrated with the
first truth table from this set of notes, the carry out C and sum S of two 2-bit unsigned numbers. Since each
output bit requires a separate expression, we now write S1S0 for the two bits of the sum. We also need to be
able to make use of the individual bits of the input values, so we write these as A1A0 and B1B0, as shown
on the left below. Using our construction from the logical completeness theorem, we obtain the equations
on the right. You should verify these expressions yourself.

inputs outputs
A1 A0 B1 B0 C S1 S0

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 1 1
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 1 0 0
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 0

C = A1 A0 B1 B0 +A1 A0 B1 B0 +A1 A0 B1 B0 +

A1 A0 B1 B0 +A1 A0 B1 B0 +A1 A0 B1 B0

S1 = A1 A0 B1 B0 +A1 A0 B1 B0 +A1 A0 B1 B0 +

A1 A0 B1 B0 +A1 A0 B1 B0 +A1 A0 B1 B0 +

A1 A0 B1 B0 +A1 A0 B1 B0

S0 = A1 A0 B1 B0 +A1 A0 B1 B0 +A1 A0 B1 B0 +

A1 A0 B1 B0 +A1 A0 B1 B0 +A1 A0 B1 B0 +

A1 A0 B1 B0 +A1 A0 B1 B0



16 c©2012 Steven S. Lumetta. All rights reserved.

Now let’s consider a new function. Given an 8-bit 2’s complement number, A = A7A6A5A4A3A2A1A0, we
want to compare it with the value -1. We know that we can construct this function using AND, OR, and
NOT, but how? We start by writing the representation for -1, which is 11111111. If the number A matches
that representation, we want to produce a 1. If the number A differs in any bit, we want to produce a 0.
The desired function has exactly one combination of inputs that produces a 1, so in fact we need only one
minterm! In this case, we can compare with -1 by calculating the expression:

A7 · A6 ·A5 ·A4 · A3 ·A2 · A1 ·A0

Here we have explicitly included multiplication symbols to avoid confusion with our notation for groups of
bits, as we used when naming the individual bits of A.

In closing, we briefly introduce a generalization of logic operations to groups of bits.
Our representations for integers, real numbers, and characters from human languages
all use more than one bit to represent a given value. When we use computers, we
often make use of multiple bits in groups in this way. A byte, for example, today
means an ordered group of eight bits. We can extend our logic functions to operate
on such groups by pairing bits from each of two groups and performing the logic
operation on each pair. For example, given A = A7A6A5A4A3A2A1A0 = 01010101
and B = B7B6B5B4B3B2B1B0 = 11110000, we calculate A AND B by computing
the AND of each pair of bits, A7 AND B7, A6 AND B6, and so forth, to produce
the result 01010000, as shown to the right. In the same way, we can extend other
logic operations, such as OR, NOT, and XOR, to operate on bits of groups.

A 01010101
AND B 11110000

01010000


