
c©2012 Steven S. Lumetta. All rights reserved. 23

ECE199JL: Introduction to Computer Engineering Fall 2012

Notes Set 3.3

Design of the Finite State Machine for the Lab

This set of notes explains the process that Prof. Jones used to develop the FSM for the lab. The lab simu-
lates a vending machine mechanism for automatically identifying coins (dimes and quarters only), tracking
the amount of money entered by the user, accepting or rejecting coins, and emitting a signal when a total
of 35 cents has been accepted. In the lab, we will only drive a light with the “paid in full” signal. Sorry, no
candy nor Dew will be distributed!

Physical Design, Sensors, and Timing

The physical elements of the lab were designed by Prof. Chris Schmitz and constructed with some help from
the ECE shop. A user inserts a coin into a slot at one end of the device. The coin then rolls down a slope
towards a gate controlled by a servo. The gate can be raised or lowered, and determines whether the coin
exits from the other side or the bottom of the device. As the coin rolls, it passes two optical sensors.1 One
of these sensors is positioned high enough above the slope that a dime passes beneath the sesnor, allowing
the signal T produced by the sensor to tell us whether the coin is a dime or a quarter. The second sensor is
positioned so that all coins pass in front of it. The sensor positions are chosen carefully to ensure that, in
the case of a quarter, the coin is still blocking the first sensor when it reaches the second sensor. Blocked
sensors give a signal of 1 in this design, so the rising edge the signal from the second sensor can be used as a
“clock” for our FSM. When the rising edge occurs, the signal T from the first sensor indicates whether the
coin is a quarter (T = 1) or a dime (T = 0).

A sample timing diagram for the lab appears to the right.
The clock signal generated by the lab is not only not a
square wave—in other words, the high and low portions are
not equal—but is also unlikely to be periodic. Instead, the
“cycle” is defined by the time between coin insertions. The T

signal serves as the single input to our FSM. In the timing

CLK
T
A

CLK low between coins (time varies)
CLK high as coin rolls by

T rises before CLK next state implements
coin acceptance decision (A)

diagram, T is shown as rising and falling before the clock edge. We use positive edge-triggered flip-flops to
implement our FSM, thus the aspect of the relative timing that matters to our design is that, when the clock
rises, the value of T is stable and indicates the type of coin entered. The signal T may fall before or after
the clock does—the two are equivalent for our FSM’s needs.

The signal A in the timing diagram is an output from the FSM, and indicates whether or not the coin should
be accepted. This signal controls the servo that drives the gate, and thus determines whether the coin is
accepted (A = 1) as payment or rejected (A = 0) and returned to the user.

Looking at the timing diagram, you should note that our FSM makes a decision based on its current state
and the input T and enters a new state at the rising clock edge. The value of A in the next cycle thus
determines the position of the gate when the coin eventually rolls to the end of the slope. As we said earlier,
our FSM is thus a Moore machine: the output A does not depend on the input T , but only on the current
internal state bits of the the FSM. However, you should also now realize that making A depend on T is not
adequate for this lab. If A were to rise with T and fall with the rising clock edge (on entry to the next
state), or even fall with the falling edge of T , the gate would return to the reject position by the time the
coin reached the gate, regardless of our FSM’s decision!

1The full system actually allows four sensors to differentiate four types of coins, but our lab uses only two of these sensors.



24 c©2012 Steven S. Lumetta. All rights reserved.

An Abstract Model

We start by writing down
states for a user’s expected
behavior. Given the fairly
tight constraints that we
have placed on our lab,
few combinations are pos-

state dime (T = 0) quarter (T = 1) accept? (A) paid? (P )
START DIME QUARTER no
DIME PAID yes no

QUARTER PAID yes no
PAID yes yes

sible. For a total of 35 cents, a user should either insert a dime followed by a quarter, or a quarter followed by
a dime. We begin in a START state, which transitions to states DIME or QUARTER when the user inserts
the first coin. With no previous coin, we need not specify a value for A. No money has been deposited, so we
set output P = 0 in the START state. We next create DIME and QUARTER states corresponding to the
user having entered one coin. The first coin should be accepted, but more money is needed, so both of these
states output A = 1 and P = 0. When a coin of the opposite type is entered, each state moves to a state
called PAID, which we use for the case in which a total of 35 cents has been received. For now, we ignore
the possibility that the same type of coin is deposited more than once. Finally, the PAID state accepts the
second coin (A = 1) and indicates that the user has paid the full price of 35 cents (P = 1).

We next extend our design
to handle user mistakes.
If a user enters a second
dime in the DIME state,
our FSM should reject the
coin. We create a RE-
JECTD state and add it
as the next state from

state dime (T = 0) quarter (T = 1) accept? (A) paid? (P )
START DIME QUARTER no
DIME REJECTD PAID yes no

REJECTD REJECTD PAID no no
QUARTER PAID REJECTQ yes no
REJECTQ PAID REJECTQ no no

PAID yes yes

DIME when a dime is entered. The REJECTD state rejects the dime (A = 0) and continues to wait for a
quarter (P = 0). What should we use as next states from REJECTD? If the user enters a third dime (or a
fourth, or a fifth, and so on), we want to reject the new dime as well. If the user enters a quarter, we want
to accept the coin, at which point we have received 35 cents (counting the first dime). We use this reasoning
to complete the description of REJECTD. We also create an analogous state, REJECTQ, to handle a user
who inserts more than one quarter.

What should happen after a user has paid 35 cents and bought one item? The FSM at that point is in the
PAID state, which delivers the item by setting P = 1. Given that we want the FSM to allow the user to
purchase another item, how should we choose the next states from PAID? The behavior that we want from
PAID is identical to the behavior that we defined from START. The 35 cents already deposited was used
to pay for the item delivered, so the machine is no longer holding any of the user’s money. We can thus
simply set the next states from PAID to be DIME when a dime is inserted and QUARTER when a quarter
is inserted.

At this point, we make a
decision intended primar-
ily to simplify the logic
needed to build the lab.
Without a physical item
delivery mechanism with a
specification for how its in-

state dime (T = 0) quarter (T = 1) accept? (A) paid? (P )
PAID DIME QUARTER yes yes
DIME REJECTD PAID yes no

REJECTD REJECTD PAID no no
QUARTER PAID REJECTQ yes no
REJECTQ PAID REJECTQ no no

put must be driven, the behavior of the output signal P can be fairly flexible. For example, we could build
a delivery mechanism that used the rising edge of P to open a chute. In this case, the output P = 0 in
the start state is not relevant, and we can merge the state START with the state PAID. The way that we
handle P in the lab, we might find it strange to have a “paid” light turn on before inserting any money, but
keeping the design simple enough for a first lab exercise is more important. Our final abstract state table
appears above.



c©2012 Steven S. Lumetta. All rights reserved. 25

Picking the Representation

We are now ready to choose the state representation for the lab FSM. With five states, we need three bits
of internal state. Prof. Jones decided to leverage human meaning in assigning the bit patterns, as follows:

S2 type of last coin inserted (0 for dime, 1 for quarter)
S1 more than one quarter inserted? (1 for yes, 0 for no)
S0 more than one dime inserted? (1 for yes, 0 for no)

These meanings are not easy to apply to all of our states. For example, in the
PAID state, the last coin inserted may have been of either type, or of no type
at all, since we decided to start our FSM in that state as well. However, for the
other four states, the meanings provide a clear and unique set of bit pattern
assignments, as shown to the right. We can choose any of the remaining four bit
patterns (010, 011, 101, or 111) for the PAID state. In fact, we can choose all

of the remaining patterns for the PAID state. We can always represent any state

state S2S1S0

PAID ???
DIME 000

REJECTD 001
QUARTER 100
REJECTQ 110

with more than one pattern if we have spare patterns available. Prof. Jones used this freedom to simplify
the logic design.

This particular example is slightly tricky. The four free patterns do not share any single bit in common,
so we cannot simply insert x’s into all K-map entries for which the next state is PAID. For example, if we
insert an x into the K-map for S

+

2 , and then choose a function for S+

2 that produces a value of 1 in place of
the don’t care, we must also produce a 1 in the corresponding entry of the K-map for S+

0 . Our options for
PAID include 101 and 111, but not 100 nor 110. These latter two states have other meanings.

Let’s begin by writing a next-state table
consisting mostly of bits, as shown to
the right. We use this table to write
out a K-map for S

+

2 as follows: any of
the patterns that may be used for the
PAID state obey the next-state rules for
PAID. Any next-state marked as PAID
is marked as don’t care in the K-map,

S
+

2 S
+

1 S
+

0

state S2S1S0 T = 0 T = 1
PAID PAID 000 100
DIME 000 001 PAID

REJECTD 001 001 PAID
QUARTER 100 PAID 110
REJECTQ 110 PAID 110

+S2 S2S1

00 01 11 10

1

1

00

01

11

10

S0T
1

000 0

1x

x 1

x00

1

x

since we can choose patterns starting with either or both values to represent our PAID state. The result-
ing K-map appears to the far right. As shown, we simply set S+

2 = T , which matches our original “meaning”
for S2. That is, S2 is the type of the last coin inserted.

Based on our choice for S+

2 , we can rewrite the K-map as shown to the right, with green
italics and shading marking the values produced for the x’s in the specification. Each
of these boxes corresponds to one transition into the PAID state. By specifying the S2

value, we cut the number of possible choices from four to two in each case. For those
combinations in which the implementation produces S+

2 = 0, we must choose S
+

1 = 1,
but are still free to leave S+

0
marked as a don’t care. Similarly, for those combinations

in which the implementation produces S
+

2 = 1, we must choose S
+

0 = 1, but are still
free to leave S

+

1 marked as a don’t care.

+S2 S2S1

00 01 11 10

1

1

00

01

11

10

S0T
1

000 0

1

1

00

11

1

0 0

The K-maps for S
+

1
and S

+

0
are shown to the right. We have

not given algebraic expressions for either, but have indicated our
choices by highlighting the resulting replacements of don’t care
entries with the values produced by our expressions. At this
point, we can review the state patterns actually produced by each
of the four next-state transitions into the PAID state. From the
DIME state, we move into the 101 state when the user inserts a

+S1 S2S1

00 01 11 10

1

00

01

11

10

S0T

000 0

1

00 1 1

0

0 0 0

0

0

+S0 S2S1

00 01 11 10

00

01

11

10

S0T

00 0

0

1

1

1

1

0

0

0 0

00

0 0

quarter. The result is the same from the REJECTD state. From the QUARTER state, however, we move
into the 010 state when the user inserts a dime. The result is the same from the REJECTQ state. We must
thus classify both patterns, 101 and 010, as PAID states. The remaining two patterns, 011 and 111, cannot



26 c©2012 Steven S. Lumetta. All rights reserved.

be reached from any of the states in our design. We
might then try to leverage the fact that the next-
state patterns from these two states are not relevant
(recall that we fixed the next-state patterns for all
four of the possible PAID states) to further simplify
our logic, but doing so does not provide any advan-
tage (you may want to check our claim).

The final state table is shown to the right. We
have included the extra states at the bottom of the
table. We have specified the next-state logic for these

S
+

2 S
+

1 S
+

0

state S2S1S0 T = 0 T = 1 A P

PAID1 010 000 100 1 1
PAID2 101 000 100 1 1
DIME 000 001 101 1 0

REJECTD 001 001 101 0 0
QUARTER 100 010 110 1 0
REJECTQ 110 010 110 0 0
EXTRA1 011 000 100 x x
EXTRA2 111 000 100 x x

states, but left the output bits as don’t cares. A state transition diagram appears at the bottom of this page.

Testing the Design

Having a complete design on paper is a good step forward, but humans make mistakes at all stages. How
can we know that a circuit that we build in the lab correctly implements the FSM that we have outlined in
these notes?

For the lab design, we have two problems to solve. First, we have not specified an initialization scheme for
the FSM. We may want the FSM to start in one of the PAID states, but adding initialization logic to the
design may mean requiring you to wire together significantly more chips. Second, we need a sequence of
inputs that manages to test that all of the next-state and output logic implementations are correct.

Testing sequential logic, including FSMs, is in general extremely difficult. In fact, large sequential systems
today are generally converted into combinational logic by using shift registers to fill the flip-flops with a
particular pattern, executing the logic for one clock cycle, and checking that the resulting pattern of bits in
the flip-flops is correct. This approach is called scan-based testing, and is discussed in ECE 543. You will
make use of a similar approach when you test your combinational logic in the second week of the lab, before
wiring up the flip-flops.

We have designed our FSM to be easy to test (even small FSMs may be challenging) with a brute force
approach. In particular, we identify two input sequences that together serve both to initialize and to test a
correctly implemented variant of our FSM. Our initialization sequence forces the FSM into a specific state
regardless of its initial state. And our test sequence crosses every transition arc leaving the six valid states.

In terms of T , the coin type, we initialize the FSM with the input sequence 001. Notice that such a sequence
takes any initial state into PAID2.

For testing, we use the input sequence 111010010001. You should trace this sequence, starting from PAID2,
on the diagram below to see how the test sequence covers all of the possible arcs. As we test, we need also
to observe the A and P outputs in each state to check the output logic.

T=0 T=0

T=1

T=1

T=1

T=1 T=1

T=0

T=0

T=0

T=1

T=1

T=0

T=1

T=0

T=0

QTR
100/10

PAID1
010/11

PAID2
101/11

EXTRA1
011/xx

EXTRA2
111/xx

DIME
000/10

REJECTD
001/00

REJECTQ
110/00


