
c©2012 Steven S. Lumetta. All rights reserved. 1

ECE199JL: Introduction to Computer Engineering Fall 2012

Notes Set 1.1

The Halting Problem

For some of the topics in this course, we plan to cover the material more deeply than does the textbook. We
will provide notes in this format to supplement the textbook for this purpose. In order to make these notes
more useful as a reference, definitions are highlighted with boldface, and italicization emphasizes pitfalls or
other important points.

This set of notes gives describes the first problem known to be undecidable, the halting problem. For our
class, you need only recognize the name and realize that one can, in fact, give examples of problems that
cannot be solved by computation. In the future, you should be able to recognize this type of problem so as
to avoid spending your time trying to solve it.

Universal Computing Machines

As discussed in the textbook and in class, a universal computational device (or computing machine)
is a device that is capable of computing the solution to any problem that can be computed, provided that
the device is given enough storage and time for the computation to finish. The idea came out of a 1936
paper by Alan Turing, and today we generally refer to these devices as Turing machines.

The things that we call computers today, whether we are talking about a programmable microcontroller in
a microwave oven or the Blue Waters supercomputer sitting on the south end of our campus (the United
States’ main resource to support computational science research), are all equivalent in the sense of what
problems they can solve. All of them are provably equivalent to Turing machines. These machines do, of
course, have access to different amounts of memory, and compute at different speeds.

Turing also conjectured that his definition of computable was identical to the “natural” definition. In other
words, a problem that cannot be solved by a Turing machine cannot be solved in any systematic manner,
with any machine, or by any person. This thesis remains unproven! However, neither has anyone been
able to disprove the thesis, and it is widely believed to be true. Disproving the thesis requires that one
demonstrate a systematic technique (or a machine) capable of solving a problem that cannot be solved by a
Turing machine. No one has been able to do so to date.

The Halting Problem

You might reasonably ask whether any problems can be shown to be incomputable. More common terms
for such problems—those known to be insolvable by any computer—are intractable or undecidable. In
the same 1936 paper, Alan Turing also provided an answer to this question by introducing (and proving)
that there are in fact problems that cannot be computed by a universal computing machine. The problem
that he proved undecidable, using proof techniques almost identical to those developed for similar problems
in the 1880s, is now known as the halting problem.

The halting problem is easy to state and easy to prove undecidable. The problem is this: given a Turing
machine and an input to the Turing machine, does the Turing machine finish computing in a finite number
of steps (a finite amount of time)? In order to solve the problem, an answer, either yes or no, must be given
in a finite amount of time regardless of the machine or input in question. Clearly some machines never finish.
For example, we can write a Turing machine that counts upwards starting from one.

You may find the proof structure for undecidability of the halting problem easier to understand if you first
think about a related problem with which you may already be familiar, the Liar’s paradox (which is at least
2,300 years old). In its stengthened form, it is the following sentence: “This sentence is not true.”



2 c©2012 Steven S. Lumetta. All rights reserved.

To see that no Turing machine can solve the halting problem, we
begin by assuming that such a machine exists, and then show that
its existence is self-contradictory. We call the machine the “Halting
Machine,” or HM for short. HM is a machine that operates on another

Halting
Machine (HM)

Turing
machine +

inputs

yes
or
no

machine and its inputs to produce a yes or no answer in finite time: either the machine in question finishes
in finite time (HM returns “yes”), or it does not (HM returns “no”). The figure illustrates HM’s operation.

From HM, we construct a second machine that we call
the HM Inverter, or HMI. This machine inverts the sense
of the answer given by HM. In particular, the inputs are
fed directly into a copy of HM, and if HM answers “yes,”
HMI enters an infinite loop. If HM answers “no,” HMI
halts. A diagram appears to the right.

The inconsistency can now be seen by asking HM whether
HMI halts when given itself as an input (repeatedly), as

Halting
Machine (HM)

Turing
machine +

inputs

HM
said yes?

count forever

yes

no
done

Halting Machine
Inverter (HMI)

shown below. Two copies of HM are thus being asked the same question. One copy is the rightmost in the
figure below and the second is embedded in the HMI machine that we are using as the input to the rightmost
HM. As the two copies of HM operate on the same input (HMI operating on HMI), they should return the
same answer: a Turing machine either halts on an input, or it does not; they are deterministic.

Halting
Machine (HM)

HM
said yes?

count forever

HMIHMI

Halting
Machine (HM)

yes
or
noyes

no
done

Halting Machine
Inverter (HMI)

. . .

a Turing machine + inputs

Let’s assume that the rightmost HM tells us that HMI operating on itself halts. Then the copy of HM in
HMI (when HMI executes on itself, with itself as an input) must also say “yes.” But this answer implies
that HMI doesn’t halt (see the figure above), so the answer should have been no!

Alternatively, we can assume that the rightmost HM says that HMI operating on itself does not halt. Again,
the copy of HM in HMI must give the same answer. But in this case HMI halts, again contradicting our
assumption.

Since neither answer is consistent, no consistent answer can be given, and the original assumption that HM
exists is incorrect. Thus, no Turing machine can solve the halting problem.


