
c©2012 Steven S. Lumetta. All rights reserved. 11

ECE199JL: Introduction to Computer Engineering Fall 2012
Notes Set 3.2

Finite State Machine Design Examples, Part I

This set of notes uses a series of examples to illustrate design principles for the implementation of finite
state machines (FSMs) using digital logic. We begin with an overview of the design process for a digital
FSM, from the development of an abstract model through the implementation of functions for the next-state
variables and output signals. Our first few examples cover only the concrete aspects: we implement several
counters, which illustrate the basic process of translating a concrete and complete state transition diagram
into an implementation based on flip-flops and logic gates. We next consider a counter with a number of
states that is not a power of two, with which we illustrate the need for FSM initialization. As part of solving
the initialization problem, we also introduce a general form of selection logic called a multiplexer.

We next consider the design process as a whole through a more general example of a counter with multiple
inputs to control its behavior. We work from an abstract model down to an implementation, illustrating
how semantic knowledge from the abstract model can be used to simplify the implementation. Finally, we
illustrate how the choice of representation for the FSM’s internal state affects the complexity of the imple-
mentation. Fortunately, designs that are more intuitive and easier for humans to understand also typically
make the best designs in terms of other metrics, such as logic complexity.

Steps in the Design Process

Before we begin exploring designs, let’s talk briefly about the general approach that we take when designing
an FSM. We follow a six-step process:

1. develop an abstract model
2. specify I/O behavior
3. complete the specification
4. choose a state representation
5. calculate logic expressions
6. implement with flip-flops and gates

In Step 1, we translate our description in human language into a model with states and desired behavior.
At this stage, we simply try to capture the intent of the description and are not particularly thorough nor
exact.

Step 2 begins to formalize the model, starting with its input and output behavior. If we eventually plan
to develop an implementation of our FSM as a digital system (which is not the only choice, of course!), all
input and output must consist of bits. Often, input and/or output specifications may need to match other
digital systems to which we plan to connect our FSM. In fact, most problems in developing large digital

systems today arise because of incompatibilities when composing two or more separately designed pieces (or
modules) into an integrated system.

Once we know the I/O behavior for our FSM, in Step 3 we start to make any implicit assumptions clear
and to make any other decisions necessary to the design. Occasionally, we may choose to leave something
undecided in the hope of simplifying the design with “don’t care” entries in the logic formulation.

In Step 4, we select an internal representation for the bits necessary to encode the state of our FSM. In
practice, for small designs, this representation can be selected by a computer in such a way as to optimize the
implementation. However, for large designs, such as the LC-3 instruction set architecture that we study later
in this class, humans do most of the work by hand. In the later examples in this set of notes, we show how
even a small design can leverage meaningful information from the design when selecting the representation,
leading to an implementation that is simpler and is easier to build correctly. We also show how one can use
abstraction to simplify an implementation.

12 c©2012 Steven S. Lumetta. All rights reserved.

By Step 5, our design is a complete specification in terms of bits, and we need merely derive logic expressions
for the next-state variables and the output signals. This process is no different than for combinational logic,
and should already be fairly familiar to you.

Finally, in Step 6, we translate our logic expressions into gates, inserting flip-flops (or registers) to hold the
internal state bits of the FSM. In later notes, we will use more complex building blocks when implementing
an FSM, building up abstractions in order to simplify the design process in much the same way that we have
shown for combinational logic.

Example: A Two-Bit Gray Code Counter

Let’s begin with a two-bit Gray code counter with no inputs. As we mentioned in Notes Set 2.1, a Gray code
is a cycle over all bit patterns of a certain length in which adjacent patterns differ in exactly one bit. For
simplicity, our first few examples are based on counters and use the internal state of the FSM as the output
values. You should already know how to design combinational logic for the outputs if it were necessary.
The inputs to a counter, if any, are typically limited to functions such as starting and stopping the counter,
controlling the counting direction, and resetting the counter to a particular state.

A fully-specified transition diagram for a two-bit Gray code counter appears below. With no inputs, the
states simply form a loop, with the counter moving from one state to the next each cycle. Each state in
the diagram is marked with the internal state value S1S0 (before the “/”) and the output Z1Z0 (after the
“/”), which are always equal for this counter. Based on the transition diagram, we can fill in the K-maps
for the next-state values S+

1 and S+

0 as shown to the right of the transition diagram, then derive algebraic
expressions in the usual way to obtain S+

1 = S0 and S+

0 = S1. We then use the next-state logic to develop
the implementation shown on the far right, completing our first counter design.

COUNT A COUNT B COUNT C COUNT D
00/00 01/01 11/11 10/10

0 1

S1

S1

S0

0

1

+

0 1

10

1

S0

S1

S0

0

1

+

0 1

0

1

0

D

Q

Q

S1

D

Q

Q

S0

Z1

Z0

CLOCK

a two−bit Gray code counter

Example: A Three-Bit Gray Code Counter

Now we’ll add a third bit to our counter, but again
use a Gray code as the basis for the state sequence.
A fully-specified transition diagram for such a counter
appears to the right. As before, with no inputs, the
states simply form a loop, with the counter moving
from one state to the next each cycle. Each state in the
diagram is marked with the internal state value S2S1S0

(before the “/”) and the output Z2Z1Z0 (after the
“/”).

COUNT A COUNT B COUNT C COUNT D
000/000 001/001 011/011 010/010

100/100 101/101 111/111 110/110
COUNT ECOUNT FCOUNT GCOUNT H

Based on the transition diagram, we can fill
in the K-maps for the next-state values S+

2 ,
S+

1 , and S+

0 as shown to the right, then derive
algebraic expressions. The results are more
complex this time.

S2

+S2 S1S0

00 01 11 10

0

1

00 0 1

1110
S2

+S1 S1S0

00 01 11 10

0

1

0

0

1 1 1

100
S2

+S0 S1S0

00 01 11 10

0

1 10

1 01 0

10

c©2012 Steven S. Lumetta. All rights reserved. 13

For our next-state logic, we obtain:

S+

2 = S2 S0 + S1 S0

S+

1 = S2 S0 + S1 S0

S+

0
= S2 S1 + S2 S1

Notice that the equations for S+

2 and S+

1 share a com-
mon term, S1S0. This design does not allow much
choice in developing good equations for the next-state
logic, but some designs may enable you to reduce the
design complexity by explicitly identifying and making
use of common algebraic terms and sub-expressions for
different outputs. In modern design processes, identi-
fying such opportunities is generally performed by a
computer program, but it’s important to understand
how they arise. Note that the common term becomes a
single AND gate in the implementation of our counter,
as shown to the right.

Looking at the counter’s implementation diagram,
notice that the vertical lines carrying the current
state values and their inverses back to the next state

D

Q

Q

S1

D

Q

Q

S0

D

Q

Q

S2

Z0

Z1

Z2

CLOCK

a three−bit Gray code counter

logic inputs have been carefully ordered to simplify understanding the diagram. In particular, they are or-
dered from right to left (on the right side of the figure) as S0S0S1S1S2S2. When designing any logic diagram,
be sure to make use of a reasonable order so as to make it easy for someone (including yourself!) to read
and check the correctness of the logic.

Example: A Color Sequencer

Early graphics systems used a three-bit red-green-blue (RGB) encoding for
colors. The color mapping for such a system is shown to the right.

Imagine that you are charged with creating a counter to drive a light through
a sequence of colors. The light takes an RGB input as just described, and the
desired pattern is

off (black) yellow violet green blue

You immediately recognize that you merely need a counter with five states.
How many flip-flops will we need? At least three, since ⌈log2 (5)⌉ = 3. Given
that we’ll need three flip-flops, and that the colors we’ll need to produce as

RGB color
000 black
001 blue
010 green
011 cyan
100 red
101 violet
110 yellow
111 white

outputs are all unique bit patterns, we can again choose to use the counter’s internal state directly as our
output values.

A fully-specified transition diagram for our
color sequencer appears to the right. The
states again form a loop, and are marked
with the internal state value S2S1S0 and
the output RGB.

000/000
BLACK YELLOW VIOLET

110/110 101/101
GREEN
010/010

BLUE
001/001

As before, we can use the transition dia-
gram to fill in K-maps for the next-state
values S+

2 , S+

1 , and S+

0 as shown to
the right. For each of the three states
not included in our transition diagram, we

S2

+S2 S1S0

00 01 11 10

0

1

0

1

1 x 0

x 0 x
S2

+S1 S1S0

00 01 11 10

0

1

01 x 0

x x1 0
S2

+S0 S1S0

00 01 11 10

0

1

0

1

x

x 0 x

0 1

14 c©2012 Steven S. Lumetta. All rights reserved.

have inserted x’s into the K-maps to indicate “don’t
care.” As you know, we can treat each x as either
a 0 or a 1, whichever produces better results (where
“better” usually means simpler equations). The terms
that we have chosen for our algebraic equations are
illustrated in the K-maps. The x’s within the ellipses
become 1s in the implementation, and the x’s outside
of the ellipses become 0s.

For our next-state logic, we obtain:

S+

2 = S2 S1 + S1 S0

S+

1 = S2 S0 + S1 S0

S+

0 = S1

Again our equations for S+

2 and S+

1 share a common
term, which becomes a single AND gate in the imple-
mentation shown to the right.

D

Q

Q

S1

D

Q

Q

S0

D

Q

Q

S2

CLOCK

an RGB color sequencer

R

G

B

Identifying an Initial State

Let’s say that you go the lab and build the implementation above, hook it up to the light, and turn it on.
Does it work? Sometimes. Sometimes it works perfectly, but sometimes the light glows cyan briefly first. At
other times, the light is an unchanging white, or an unchanging red.

What could be going wrong?

Let’s try to understand. We’ll begin by deriv-
ing K-maps for the implementation diagram,
as shown to the right. In these K-maps, each
of the x’s in our design has been replaced by
either a 0 or a 1. These entries are high-
lighted with green italics to call your attention
to them.

S2

+S2 S1S0

00 01 11 10

0

1

0

1

1 0

01 1

0
S2

+S1 S1S0

00 01 11 10

0

1

01 0

1 01 1

0
S2

+S0 S1S0

00 01 11 10

0

1

0

10

0 1

0 1

1

Now let’s imagine what might happen if somehow our FSM got into the S2S1S0 = 111 state. In such
a state, the light would appear white, since RGB = S2S1S0 = 111. What happens in the next cycle?
Plugging into the equations or looking into the K-maps gives (of course) the same answer: the next state
is S+

2
S+

1
S+

0
= 111 state. In other words, the light will stay white indefinitely! As an exercise, you should

verify that the same thing happens with red light. What happens if the light is cyan?

We can extend the transition diagram that we developed for our design with the extra states possible in the
implementation, as shown below. As with the five states in the design, the extra states are named with the
color of light that they produce.

BLUE
001/001

CYAN
011/011

RED
100/100

WHITE
111/111000/000

BLACK YELLOW VIOLET
110/110 101/101

GREEN
010/010

Notice that the FSM does not move out of the WHITE state nor the RED state (ever). You may at this
point wonder whether more careful decisions in selecting our next-state expressions might address this issue.
To some extent, yes. For example, if we replace the S2S1 term in the equation for S+

2 with S2S0, a decision
allowed by the “don’t care” boxes in the K-map for our design, the resulting transition diagram does not

c©2012 Steven S. Lumetta. All rights reserved. 15

suffer from the problem that we’ve found. However, even if we do change our implementation slightly, we
need to address another aspect of the problem: how can the FSM ever get into the unexpected states?

What is the initial state of the three flip-flops in our implementation? The initial state may not even be 0s

and 1s unless we have an explicit mechanism for initialization. Initialization can work in two ways. The
first approach makes use of the flip-flop design. As you know, a flip-flop is built from a pair of latches, and
we can make use of the internal reset lines on these latches to force each flip-flop into the 0 state (or the
1 state) using an additional input.

Alternatively, we can add some extra logic to our design. Consider adding a few AND gates and a RESET
input (active low), as shown in the dashed box in the figure below. In this case, when we assert RESET
by setting it to 0, the FSM moves to state 000 in the next cycle, putting it into the BLACK state. The
approach taken here is for clarity; one can optimize the design, if desired. For example, we could simply
connect RESET as an extra input into the three AND gates on the left rather than adding new ones, with
the same effect.

D

Q

Q

S1

D

Q

Q

S0

D

Q

Q

S2

an RGB color sequencer with reset

CLOCK

R

G

B

RESET

The Multiplexer

We may sometimes want a more powerful initialization mechanism—one that allows us to force the FSM
into any specific state in the next cycle. In such a case, we can add the logic block shown in the dashed
boxes in the figure at the top of the next page to each of our flip-flop inputs. The block has two inputs from
the left and one from the top. The top input allows us to choose which of the left inputs is forwarded to the
output. In our design, the top input comes from INIT . When INIT = 0, the top AND gate in each of the
three blocks outputs a 0, and the bottom AND gate forwards the corresponding next-state input from our
design. The OR gate thus also forwards the next-state input, and the system moves into the next state for
our FSM whenever INIT = 0.

What happens when INIT = 1? In this case, the bottom AND gate in each of the blocks in the dashed
boxes produces a 0, and the top AND gate as well as the OR gate forwards one of the Ix signals. The state
of our FSM in the next cycle is then given by I2I1I0. In other words, we can put the FSM into any desired
state by applying that state to the I2I1I0 inputs, setting INIT = 1, and waiting for the next cycle.

16 c©2012 Steven S. Lumetta. All rights reserved.

D

Q

Q

S1

D

Q

Q

S0

D

Q

Q

S2

I2 I0I1 CLOCK

R

G

B

an RGB color sequencer with arbitrary initialization

INIT

The logic block that we have used is called a multi-

plexer. Multiplexers are an important abstraction for
digital logic. In general, a multiplexer allows us to use
one digital signal to select which of several others is
forwarded to an output. The one that our design used
is the simplest form, a 2-to-1 multiplexer. The block is
replicated to the right along with its symbolic form, a
trapezoid with data inputs on the larger side, an output
on the smaller side, and a select input on angled part of

D1

D0

D0

D1 1

0
Q

S

S

Q

a 2−to−1 multiplexer
(logic diagram)

a 2−to−1 multiplexer
(symbolic form)

the trapezoid. The labels inside the trapezoid indicate the value of the select input S for which the adjacent
data signal, D1 or D0, is copied to the output Q.

We can generalize multiplexers in
two ways. First, we can extend the
single select input to a group of se-
lect inputs. An N -bit select input
allows selection from amongst 2N

inputs. A 4-to-1 multiplexer is
shown to the right, for example.
If you look back at Notes Set 2.7,
you will also find this type of mul-
tiplexer used in our bidirectional
shift register.

The second way in which we
can generalize multiplexers is by
simply copying them and using
the same inputs for selection. For
example, we might use a single
select bit to choose between any
number of paired inputs. Denote
input pair by i Di

1 and Di

0. For

2

S1 S0

D1

D0

(logic diagram)
a 4−to−1 multiplexer

D3

D2

D2

D3

D0

D1

a 4−to−1 multiplexer
(symbolic form)

Q

3

2

1

0

Q

S

each pair, we have an output Qi. When S = 0, Qi = Di

0 for each value of i. And, when S = 1, Qi = Di

1 for
each value of i.

c©2012 Steven S. Lumetta. All rights reserved. 17

Specific configurations of multiplexers are often referred to as N-to-M multiplexers. Here the value N
refers to the number of inputs, and M refers to the number of outputs. The number of select bits can then
be calculated as log2(N/M)—N/M is generally a power of two—and one way to build such a multiplexer is
to use M copies of an (M/N)-to-1 multiplexer.

Developing an Abstract Model

We are now ready to discuss the design process for
an FSM from start to finish. For this first abstract
FSM example, we build upon something that we have
already seen: a two-bit Gray code counter. We now
want a counter that allows us to start and stop the
count.

state no input halt button go button
counting counting halted
halted halted counting

What is the mechanism for stopping and starting? To begin our design, we could sketch out an abstract
next-state table such as the one shown above. In this form of the table, the first column lists the states,
while each of the other columns lists states to which the FSM transitions after a clock cycle for a particular
input combination. The table contains two states, counting and halted, and specifies that the design uses
two distinct buttons to move between the states.

A counter with a single counting state, of course,
does not provide much value. We extend the
table with four counting states and four halted
states, as shown to the right. This version of the
table also introduces more formal state names,
for which these notes use all capital letters.

The upper four states represent uninterrupted
counting, in which the counter cycles through
these states indefinitely. A user can stop the
counter in any state by pressing the “halt” but-
ton, causing the counter to retain its current
value until the user presses the “go” button.

Below the state table is an abstract transition
diagram, which provides exactly the same infor-
mation in graphical form. Here circles represent
states (as labeled) and arcs represent transitions
from one state to another based on an input com-
bination (which is used to label the arc).

We have already implicitly made a few choices
about our counter design. First, the counter

state no input halt button go button
COUNT A COUNT B HALT A
COUNT B COUNT C HALT B
COUNT C COUNT D HALT C
COUNT D COUNT A HALT D
HALT A HALT A COUNT B
HALT B HALT B COUNT C
HALT C HALT C COUNT D
HALT D HALT D COUNT A

press
halt

press
halt

press
halt

press
haltpr

es
s g

o

pr
es

s g
o

pr
es

s g
o

press go

HALT B

COUNT C

HALT DHALT CHALT A

COUNT DCOUNT A COUNT B

shown records the current state of the system when “halt” is pressed. We could instead reset the counter
state whenever it is restarted, in which case we need only five states: four for counting and one more for
a halted counter. Second, we’ve designed the counter to stop when the user presses “halt” and to resume
counting when the user presses “go.” We could instead choose to delay these effects by a cycle. For ex-
ample, pressing “halt” in state COUNT B could take the counter to state HALT C, and pressing “go” in
state HALT C could take the system to state COUNT C. In these notes, we implement only the diagrams
shown.

18 c©2012 Steven S. Lumetta. All rights reserved.

Specifying I/O Behavior

We next start to formalize our design by specifying its
input and output behavior digitally. Each of the two
control buttons provides a single bit of input. The
“halt” button we call H , and the “go” button we
call G. For the output, we use a two-bit Gray code.
With these choices, we can redraw the transition dia-
gram as show to the right.

In this figure, the states are marked with output val-
ues Z1Z0 and transition arcs are labeled in terms of
our two input buttons, G and H . The uninterrupted
counting cycle is labeled with H to indicate that it
continues until we press H .

H H H H

G G G G

H H H HG G G

G

COUNT A
/00

COUNT B COUNT C COUNT D
/10/01 /11

HALT A
/00

HALT B
/01

HALT C
/11

HALT D
/10

Completing the Specification

Now we need to think about how the system should behave if something outside of our initial expectations
occurs. Having drawn out a partial transition diagram can help with this process, since we can use the
diagram to systematically consider all possible input conditions from all possible states. The state table
form can make the missing parts of the specification even more obvious.

For our counter, the symmetry
between counting states makes
the problem substantially simpler.
Let’s write out part of a list of
states and part of a state table
with one counting state and one
halt state, as shown to the right.
Four values of the inputs HG are
possible (recall that N bits allow
2N possible patterns). We list the
columns in Gray code order, since
we may want to transcribe this ta-
ble into K-maps later.

state description
first counting state COUNT A counting, output Z1Z0 = 00

first halted state HALT A halted, output Z1Z0 = 00

HG
state 00 01 11 10

COUNT A COUNT B unspecified unspecified HALT A
HALT A HALT A COUNT B unspecified unspecified

Let’s start with the COUNT A state. We know that if neither button is pressed (HG = 00), we want the
counter to move to the COUNT B state. And, if we press the “halt” button (HG = 10), we want the counter
to move to the HALT A state. What should happen if a user presses the “go” button (HG = 01)? Or if
the user presses both buttons (HG = 11)? Answering these questions is part of fully specifying our design.
We can choose to leave some parts unspecified, but any implementation of our system will imply answers,
and thus we must be careful. We choose to ignore the “go” button while counting, and to have the “halt”
button override the “go” button. Thus, if HG = 01 when the counter is in state COUNT A, the counter
moves to state COUNT B. And, if HG = 11, the counter moves to state HALT A.

Use of explicit bit patterns for the inputs HG may help you to check that all four possible input values are
covered from each state. If you choose to use a transition diagram instead of a state table, you might even
want to add four arcs from each state, each labeled with a specific value of HG. When two arcs connect the
same two states, we can either use multiple labels or can indicate bits that do not matter using a don’t-care

symbol, x. For example, the arc from state COUNT A to state COUNT B could be labeled HG = 00, 01 or
HG = 0x. The arc from state COUNT A to state HALT A could be labeled HG = 10, 11 or HG = 1x. We
can also use logical expressions as labels, but such notation can obscure unspecified transitions.

Now consider the state HALT A. The transitions specified so far are that when we press “go” (HG = 01), the
counter moves to the COUNT B state, and that the counter remains halted in state HALT A if no buttons
are pressed (HG = 00). What if the “halt” button is pressed (HG = 10), or both buttons are pressed

c©2012 Steven S. Lumetta. All rights reserved. 19

(HG = 11)? For consistency, we decide that “halt” overrides “go,” but does nothing special if it alone is
pressed while the counter is halted. Thus, input patterns HG = 10 and HG = 11 also take state HALT A
back to itself. Here the arc could be labeled HG = 00, 10, 11 or, equivalently, HG = 00, 1x or HG = x0, 11.

To complete our design, we apply the same decisions
that we made for the COUNT A state to all of the
other counting states, and the decisions that we made
for the HALT A state to all of the other halted states.
If we had chosen not to specify an answer, an imple-
mentation could actually produce different behavior
from the different counting and/or halted states, which
could confuse a user.

The resulting design appears to the right.

HG=0x

HG=1x

HG=0x

HG=01

HG=01

HG=0x HG=0x

HG=1x HG=1x HG=1x
HG=01

HG=01

HG=x0,11 HG=x0,11 HG=x0,11 HG=x0,11

COUNT A
/00

COUNT B COUNT C COUNT D
/10/01 /11

HALT A
/00

HALT B
/01

HALT C
/11

HALT D
/10

Choosing a State Representation

Now we need to select a representation for the states. Since our counter has eight states, we need at least
three (⌈log2 (8)⌉ = 3) state bits S2S1S0 to keep track of the current state. As we show later, the choice

of representation for an FSM’s states can dramatically affect the design complexity. For a design as simple
as our counter, you could just let a computer implement all possible representations (there aren’t more
than 840, if we consider simple symmetries) and select one according to whatever metrics are interesting.
For bigger designs, however, the number of possibilities quickly becomes impossible to explore completely.

Fortunately, use of abstraction in selecting a representation also tends to produce better designs for a wide
variety of metrics (such as design complexity, power consumption, and performance). The right strategy
is thus often to start by selecting a representation that makes sense to a human, even if it requires more
bits than are strictly necessary. The resulting implementation will be easier to design and to debug than an
implementation in which only the global behavior has any meaning.

Let’s return to our specific example, the counter. We
can use one bit, S2, to record whether or not our
counter is counting (S2 = 0) or halted (S2 = 1).
The other two bits can then record the counter state
in terms of the desired output. Choosing this repre-
sentation implies that only wires will be necessary to
compute outputs Z1 and Z0 from the internal state:
Z1 = S1 and Z0 = S0. The resulting design, in which
states are now labeled with both internal state and
outputs (S2S1S0/Z1Z0) appears to the right. In this
version, we have changed the arc labeling to use logi-
cal expressions, which can sometimes help us to think
about the implementation.

H H H H

GH GH GH

H+G H+G H+G H+G

GH

H H H H

COUNT A COUNT B COUNT C COUNT D

HALT A HALT B HALT C HALT D

000/00 001/01 011/11 010/10

100/00 101/01 111/11 110/10

The equivalent state listing and state table appear below. We have ordered the rows of the state table in
Gray code order to simplify transcription of K-maps.

state S2S1S0 description
COUNT A 000 counting, output Z1Z0 = 00
COUNT B 001 counting, output Z1Z0 = 01
COUNT C 011 counting, output Z1Z0 = 11
COUNT D 010 counting, output Z1Z0 = 10
HALT A 100 halted, output Z1Z0 = 00
HALT B 101 halted, output Z1Z0 = 01
HALT C 111 halted, output Z1Z0 = 11
HALT D 110 halted, output Z1Z0 = 10

HG
state S2S1S0 00 01 11 10

COUNT A 000 001 001 100 100
COUNT B 001 011 011 101 101
COUNT C 011 010 010 111 111
COUNT D 010 000 000 110 110
HALT D 110 110 000 110 110
HALT C 111 111 010 111 111
HALT B 101 101 011 101 101
HALT A 100 100 001 100 100

20 c©2012 Steven S. Lumetta. All rights reserved.

Having chosen a representation, we
can go ahead and implement our
design in the usual way. As shown
to the right, K-maps for the next-
state logic are complicated, since
we have five variables and must
consider implicants that are not
contiguous in the K-maps. The S+

2

logic is easy enough: we only need
two terms, as shown.

Notice that we have used color and
line style to distinguish different

+S2

S1S0S2

HG
00 01 11 10

000

001

0

011

010

0

1

0

1110

111

101

100

11

1

0

0 0

1

1

11

1

1

11

1

1

11

1

0

0 0

0

0

01

1

+S1

S1S0S2

HG
00 01 11 10

000

001

10

011

010

0

1

0

1110

111

101

100

1

1

1

1

1

1

0

0 0

1

1 1

11

0 0

00

1

1

0 0

000

0

+S0

S1S0S2

10

11

10

1 1

11

00

0 0 0 0

0

1

1 11

11 1

1 000

0 0 0 0

HG
00 01 11 10

000

001

011

010

110

111

101

100

implicants in the K-maps. Furthermore, the symmetry of the design produces symmetry in the S+

1 and S+

0

formula, so we have used the same color and line style for analogous terms in these two K-maps. For S+

1 ,
we need four terms. Notice that the green ellipses in the HG = 01 column are part of the same term, as are
the two halves of the dashed blue circle. In S+

0 , we still need four terms, but three of them are split into
two pieces in the K-map. As you can see, the utility of the K-map is starting to break down with five variables.

Abstracting Design Symmetries

Rather than implementing the design as two-level logic, let’s try to take advantage of our design’s symmetry
to further simplify the logic (we reduce gate count at the expense of longer, slower paths).

Looking back to the last transition diagram, in which the arcs were labeled with logical expressions, let’s
calculate an expression for when the counter should retain its current value in the next cycle. We call this
variable HOLD. In the counting states, when S2 = 0, the counter stops (moves into a halted state) when
H is true. In the halted states, when S2 = 1, the counter stops (stays in a halted state) when H +G is true.
We can thus write

HOLD = S2 ·H + S2 · (H +G)

HOLD = S2H + S2H + S2G

HOLD = H + S2G

In other words, the counter should hold its current value (stop counting) if we press the “halt” button or if
the counter was already halted and we didn’t press the “go” button. As desired, the current value of the
counter (S1S0) has no impact on this decision. You may have noticed that the expression we derived for
HOLD also matches S+

2 , the next-state value of S2 in the K-map above.

Now let’s re-write our state transition table in terms of HOLD. The left version uses state names for clarity;
the right uses state values to help us transcribe K-maps.

HOLD
state S2S1S0 0 1

COUNT A 000 COUNT B HALT A
COUNT B 001 COUNT C HALT B
COUNT C 011 COUNT D HALT C
COUNT D 010 COUNT A HALT D
HALT A 100 COUNT B HALT A
HALT B 101 COUNT C HALT B
HALT C 111 COUNT D HALT C
HALT D 110 COUNT A HALT D

HOLD
state S2S1S0 0 1

COUNT A 000 001 100
COUNT B 001 011 101
COUNT C 011 010 111
COUNT D 010 000 110
HALT A 100 001 100
HALT B 101 011 101
HALT C 111 010 111
HALT D 110 000 110

c©2012 Steven S. Lumetta. All rights reserved. 21

The K-maps based on the HOLD abstrac-
tion are shown to the right. As you can see,
the necessary logic has been simplified sub-
stantially, requiring only two terms for each
of S+

1 and S+

0 . Writing the next-state logic
algebraically, we obtain

S+

2
= HOLD

S+

1 = HOLD · S0 +HOLD · S1

S+

0 = HOLD · S1 +HOLD · S0

+S2 HOLD S2

0

0

0

0

1

1

1

1

S1S0

00 01 11 10

0

0

1

1

1

10

0

00

01

11

10

+S1 HOLD S2

0

0 0

0

S1S0

00 01 11 10

0

0

1

10

0

1

1

1

1 1

1

00

01

11

10

+S0 HOLD S2

0 0

S1S0

00 01 11 10

0 0

00

01

11

10

0 0 1 1

1

1 1

1

1

0

1

0

An implementation appears below. By using semantic meaning in our choice of representation—in particular
the use of S2 to record whether the counter is currently halted (S2 = 1) or counting (S2 = 0)—we have
enabled ourselves to separate out the logic for deciding whether to advance the counter fairly cleanly from
the logic for advancing the counter itself. Only the HOLD bit in the diagram is used to determine whether
or not the counter should advance in the current cycle.

Let’s check that the implementation matches our original design. Start by verifying that the HOLD variable
is calculated correctly, HOLD = H + S2G, then look back at the K-map for S+

2 in the low-level design to
verify that the expression we used does indeed match. Next, verify that S+

1 and S+

0 are correctly implemented.

D

Q

Q

S1

D

Q

Q

S0

D

Q

Q

S2

Z1

Z0

H
(halt button)

G
(go button)

this bit records whether
or not the counter is

currently halted

CLOCK

HOLDa controllable two−bit counter

Finally, we check our abstraction. When HOLD = 1, the next-state logic for S+

1 and S+

0 reduces to
S+

1 = S1 and S+

0 = S0; in other words, the counter stops counting and simply stays in its current state.
When HOLD = 0, these equations become S+

1 = S0 and S+

0 = S1, which produces the repeating sequence
for S1S0 of 00, 01, 11, 10, as desired. You may want to look back at our two-bit Gray code counter design
to compare the next-state equations.

We can now verify that the implementation produces the correct transition behavior. In the counting states,
S2 = 0, and the HOLD value simplifies to HOLD = H . Until we push the “halt” button, S2 remains 0,
and and the counter continues to count in the correct sequence. When H = 1, HOLD = 1, and the counter
stops at its current value (S+

2
S+

1
S+

0
= 1S1S0, which is shorthand for S+

2
= 1, S+

1
= S1, and S+

0
= S0).

In any of the halted states, S2 = 1, and we can reduce HOLD to HOLD = H + G. Here, so long as
we press the “halt” button or do not press the “go” button, the counter stays in its current state, because
HOLD = 1. If we release “halt” and press “go,” we have HOLD = 0, and the counter resumes counting
(S+

2 S+

1 S+

0 = 0S0S1, which is shorthand for S+

2 = 0, S+

1 = S0, and S+

0 = S1). We have now verified the
implementation.

22 c©2012 Steven S. Lumetta. All rights reserved.

Impact of the State Representation

What happens if we choose a bad representation? For the same FSM, the table below shows a poorly chosen
mapping from states to internal state representation. Below the table is a diagram of an implementation
using that representation. Verifying that the implementation’s behavior is correct is left as an exercise for
the determined reader.

state S2S1S0 state S2S1S0

COUNT A 000 HALT A 111
COUNT B 101 HALT B 110
COUNT C 011 HALT C 100
COUNT D 010 HALT D 001

D

Q

Q

S0

D

Q

Q

S1

D

Q

Q

S2

G
(go button)

a controllable two−bit counter
(with poorly chosen state values)

Z1

Z0

CLOCK

H
(halt button)

