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ECE199JL: Introduction to Computer Engineering Fall 2012
Notes Set 2.1

Optimizing Logic Expressions

The second part of the course covers digital design more deeply than does the textbook. The lecture notes
will explain the additional material, and we will provide further examples in lectures and in discussion
sections. Please let us know if you need further material for study.

In the last notes, we introduced Boolean logic operations and showed that with AND, OR, and NOT, we
can express any Boolean function on any number of variables. Before you begin these notes, please read the
first two sections in Chapter 3 of the textbook, which discuss the operation of complementary metal-
oxide semiconductor (CMOS) transistors, illustrate how gates implementing the AND, OR, and NOT
operations can be built using transistors, and introduce DeMorgan’s laws.

This set of notes exposes you to a mix of techniques, terminology, tools, and philosophy. Some of the material
is not critical to our class (and will not be tested), but is useful for your broader education, and may help
you in later classes. The value of this material has changed substantially in the last couple of decades, and
particularly in the last few years, as algorithms for tools that help with hardware design have undergone
rapid advances. We talk about these issues as we introduce the ideas.

The notes begin with a discussion of the “best” way to express a Boolean function and some techniques
used historically to evaluate such decisions. We next introduce the terminology necessary to understand
manipulation of expressions, and use these terms to explain the Karnaugh map, or K-map, a tool that we
will use for many purposes this semester. We illustrate the use of K-maps with a couple of examples, then
touch on a few important questions and useful ways of thinking about Boolean logic. We conclude with a
discussion of the general problem of multi-metric optimization, introducing some ideas and approaches of
general use to engineers.

Defining Optimality

In the notes on logic operations, you learned how to express an arbitrary function on bits as an OR of
minterms (ANDs with one input per variable on which the function operates). Although this approach
demonstrates logical completeness, the results often seem inefficient, as you can see by comparing the
following expressions for the carry out C from the addition of two 2-bit unsigned numbers, A = A;Ag
and B = BlBo.

C = ABi+ (A +B)AB (1)

= A1By+A1AyBy + AgB1 By (2)
Ay Ay By Bo+ Ay Ay By By + Ay Ay By By +

Ay Ay By By + Ay Ag By By + Ay Ay By By (3)

These three expressions are identical in the sense that they have the same truth tables—they are the same
mathematical function. Equation (1) is the form that we gave when we introduced the idea of using logic
to calculate overflow. In this form, we were able to explain the terms intuitively. Equation (2) results from
distributing the parenthesized OR in Equation (1). Equation (3) is the result of our logical completeness
construction.

Since the functions are identical, does the form actually matter at all? Certainly either of the first two
forms is easier for us to write than is the third. If we think of the form of an expression as a mapping from
the function that we are trying to calculate into the AND, OR, and NOT functions that we use as logical
building blocks, we might also say that the first two versions use fewer building blocks. That observation
does have some truth, but let’s try to be more precise by framing a question. For any given function, there
are an infinite number of ways that we can express the function (for example, given one variable A on which
the function depends, you can OR together any number of copies of AA without changing the function).
What exactly makes one expression better than another?
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In 1952, Edward Veitch wrote an article on simplifying truth functions. In the introduction, he said, “This
general problem can be very complicated and difficult. Not only does the complexity increase greatly with
the number of inputs and outputs, but the criteria of the best circuit will vary with the equipment involved.”
Sixty years later, the answer is largely the same: the criteria depend strongly on the underlying technology
(the gates and the devices used to construct the gates), and no single metric, or way of measuring, is
sufficient to capture the important differences between expressions in all cases.

Three high-level metrics commonly used to evaluate chip designs are cost, power, and performance. Cost
usually represents the manufacturing cost, which is closely related to the physical silicon area required for the
design: the larger the chip, the more expensive the chip is to produce. Power measures energy consumption
over time. A chip that consumes more power means that a user’s energy bill is higher and, in a portable
device, either that the device is heavier or has a shorter battery life. Performance measures the speed at
which the design operates. A faster design can offer more functionality, such as supporting the latest games,
or can just finish the same work in less time than a slower design. These metrics are sometimes related: if
a chip finishes its work, the chip can turn itself off, saving energy.

How do such high-level metrics relate to the problem at hand? Only indirectly in practice. There are
too many factors involved to make direct calculations of cost, power, or performance at the level of logic
expressions. Finding an optimal solution—the best formulation of a specific logic function for a given
metric—is often impossible using the computational resources and algorithms available to us. Instead, tools
typically use heuristic approaches to find solutions that strike a balance between these metrics. A heuristic
approach is one that is believed to yield fairly good solutions to a problem, but does not necessarily find an
optimal solution. A human engineer can typically impose constraints, such as limits on the chip area or
limits on the minimum performance, in order to guide the process. Human engineers may also restructure
the implementation of a larger design, such as a design to perform floating-point arithmetic, so as to change
the logic functions used in the design.

Today, manipulation of logic expressions for the purposes of optimization is performed almost entirely by
computers. Humans must supply the logic functions of interest, and must program the acceptable transfor-
mations between equivalent forms, but computers do the grunt work of comparing alternative formulations
and deciding which one is best to use in context.

Although we believe that hand optimization of Boolean expressions is no longer an important skill for
our graduates, we do think that you should be exposed to the ideas and metrics historically used for such
optimization. The rationale for retaining this exposure is threefold. First, we believe that you still need to be
able to perform basic logic reformulations (slowly is acceptable) and logical equivalence checking (answering
the question, “Do two expressions represent the same function?”). Second, the complexity of the problem is
a good way to introduce you to real engineering. Finally, the contextual information will help you to develop
a better understanding of finite state machines and higher-level abstractions that form the core of digital
systems and are still defined directly by humans today.

Towards that end, we conclude this introduction by discussing two metrics that engineers traditionally used
to optimize logic expressions. These metrics are now embedded in computer-aided design (CAD) tools
and tuned to specific underlying technologies, but the reasons for their use are still interesting.

The first metric of interest is a heuristic for the area needed for a design. The measurement is simple: count
the number of variable occurrences in an expression. Simply go through and add up how many variables
you see. Using our example function C, Equation (1) gives a count of 6, Equation (2) gives a count of 8,
and Equation (3) gives a count of 24. Smaller numbers represent better expressions, so Equation (1) is
the best choice by this metric. Why is this metric interesting? Recall how gates are built from transistors.
An N-input gate requires roughly 2N transistors, so if you count up the number of variables in the expression,
you get an estimate of the number of transistors needed, which is in turn an estimate for the area required
for the design.

A variation on variable counting is to add the number of operations, since each gate also takes space for
wiring (within as well as between gates). Note that we ignore the number of inputs to the operations, so
a 2-input AND counts as 1, but a 10-input AND also counts as 1. We do not usually count complementing
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variables as an operation for this metric because the complements of variables are sometimes available at
no extra cost in gates or wires. If we add the number of operations in our example, we get a count of 10
for Equation (1)—two ANDs, two ORs, and 6 variables, a count of 12 for Equation (2)—three ANDS, one
OR, and 8 variables, and a count of 31 for Equation (3)—six ANDs, one OR, and 24 variables. The relative
differences between these equations are reduced when one counts operations.

A second metric of interest is a heuristic for the performance of a design. Performance is inversely related
to the delay necessary for a design to produce an output once its inputs are available. For example, if you
know how many seconds it takes to produce a result, you can easily calculate the number of results that
can be produced per second, which measures performance. The measurement needed is the longest chain of
operations performed on any instance of a variable. The complement of a variable is included if the variable’s
complement is not available without using an inverter. The rationale for this metric is that gate outputs do
not change instantaneously when their inputs change. Once an input to a gate has reached an appropriate
voltage to represent a 0 or a 1, the transistors in the gate switch (on or off) and electrons start to move.
Only when the output of the gate reaches the appropriate new voltage can the gates driven by the output
start to change. If we count each function/gate as one delay (we call this time a gate delay), we get an
estimate of the time needed to compute the function. Referring again to our example equations, we find
that Equation (1) requires 3 gate delays, Equation (2) requires 2 gate delays, Equation (3) requires 2 or 3
gate delays, depending on whether we have variable complements available. Now Equation (2) looks more
attractive: better performance than Equation (1) in return for a small extra cost in area.

Heuristics for estimating energy use are too complex to introduce at this point, but you should be aware that
every time electrons move, they generate heat, so we might favor an expression that minimizes the number
of bit transitions inside the computation. Such a measurement is not easy to calculate by hand, since you
need to know the likelihood of input combinations.

Terminology

We use many technical terms when we talk about simplification of logic expressions, so we now introduce
those terms so as to make the description of the tools and processes easier to understand.

Let’s assume that we have a logic function F'(A4, B,C, D) that we want to express concisely. A literal in an
expression of F' refers to either one of the variables or its complement. In other words, for our function F,
the following is a complete set of literals: A, A, B, B, C, C, D, and D.

When we introduced the AND and OR functions, we also introduced notation borrowed from arithmetic,
using multiplication to represent AND and addition to represent OR. We also borrow the related terminology,
so a sum in Boolean algebra refers to a number of terms OR’d together (for example, A+ B, or AB + CD),
and a product in Boolean algebra refers to a number of terms AND’d together (for example, AD, or
AB(C + D). Note that the terms in a sum or product may themselves be sums, products, or other types of
expressions (for example, A @ B).

The construction method that we used to demonstrate logical completeness made use of minterms for each
input combination for which the function F' produces a 1. We can now use the idea of a literal to give
a simpler definition of minterm: a minterm for a function on N variables is a product (AND function)
of N literals in which each variable or its complement appears exactly once. For our function F, examples
of minterms include ABCD, ABCD, and ABCD. As you know, a minterm produces a 1 for exactly one
combination of inputs.

When we sum minterms for each output value of 1 in a truth table to express a function, as we did to obtain
Equation (3), we produce an example of the sum-of-products form. In particular, a sum-of-products (SOP)
is a sum composed of products of literals. Terms in a sum-of-products need not be minterms, however.
Equation (2) is also in sum-of-products form. Equation (1), however, is not, since the last term in the sum
is not a product of literals.

Analogously to the idea of a minterm, we define a maxterm for a function on N variables as a sum (OR
function) of N literals in which each variable or its complement appears exactly once. Examples for F
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include (A+ B+ C+ D), (A+B+C+D), and (A+ B+ C+ D). A maxterm produces a 0 for exactly one
combination of inputs. Just as we did with minterms, we can multiply a maxterm corresponding to each
input combination for which a function produces 0 (each row in a truth table that produces a 0 output)
to create an expression for the function. The resulting expression is in a product-of-sums (POS) form:
a product of sums of literals. The carry out function that we used to produce Equation (3) has 10 input
combinations that produce 0, so the expression formed in this way is unpleasantly long:

C = (A;+ A+ By + Bo)(A1 + Ao + B1 + Bo)(A1 + Ao + Bi + Bo) (A1 + Ag + B1 + Bo)
(A1 + Ao + B1 + Bo) (A1 + Ao + Bi + Bo) (A1 + Ao + B1 + Bo)(A1 + Ao + Bi + By)
(A1 + Ao + Bi + Bo)(A1 + Ao + B1 + By)

However, the approach can be helpful with functions that produce mostly 1s. The literals in maxterms are
complemented with respect to the literals used in minterms. For example, the maxterm (A + Ag+ B1+ Bo)
in the equation above produces a zero for input combination A1 =1, A4p =1, B1 =0, Bo =0.

An implicant G of a function F' is defined to be a second function operating on the same variables for which
the implication G — F is true. In terms of logic functions that produce Os and 1s, if G is an implicant of F,
the input combinations for which G produces 1s are a subset of the input combinations for which F produces
1s. Any minterm for which F' produces a 1, for example, is an implicant of F.

In the context of logic design, the term implicant is used to refer to a single product of literals. In other
words, if we have a function F(A, B, C, D), examples of possible implicants of F' include AB, BC, ABCD,
and A. In contrast, although they may technically imply F, we typically do not call expressions such as
(A+ B), C(A+ D), nor AB + C implicants.

Let’s say that we have expressed function F' in sum-of-products form. All of the individual product terms
in the expression are implicants of F'. As a first step in simplification, we can ask: for each implicant, is it
possible to remove any of the literals that make up the product? If we have an implicant G for which the
answer is no, we call G a prime implicant of F. In other words, if one removes any of the literals from a
prime implicant G of F, the resulting product is not an implicant of F'.

Prime implicants are the main idea that we use to simplify logic expressions, both algebraically and with
graphical tools (computer tools use algebra internally—by graphical here we mean drawings on paper).

Veitch Charts and Karnaugh Maps

Veitch’s 1952 paper was the first to introduce the idea of using a graphical representation to simplify logic
expressions. Earlier approaches were algebraic. A year later, Maurice Karnaugh published a paper showing
a similar idea with a twist. The twist makes the use of Karnaugh maps to simplify expressions much easier
than the use of Veitch charts. As a result, few engineers have heard of Veitch, but everyone who has ever
taken a class on digital logic knows how to make use of a K-map.

Before we introduce the Karnaugh map, let’s

think about the structure of the domain of a ABC=000 AlA ABC=100
logic function. Recall that a function’s domain A c

is the space on which the function is defined, _ - . NS A
that is, for which the function produces values. AR s } e B
For a Boolean logic function on N variables, A= A= B B
you can think of the domain as sequences e e T oG

of N bits, but you can also visualize the
domain as an N-dimensional hypercube. An i hecsio
N-dimensional hypercube is the generalization of a cube to N dimensions. Some people only use the
term hypercube when N > 4, since we have other names for the smaller values: a point for N = 0, a line
segment for NV = 1, a square for N = 2, and a cube for N = 3. The diagrams above and to the right illustrate
the cases that are easily drawn on paper. The black dots represent specific input combinations, and the blue
edges connect input combinations that differ in exactly one input value (one bit).
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By viewing a function’s domain in this way, we can make a connection between a product of literals and
the structure of the domain. Let’s use the 3-dimensional version as an example. We call the variables A, B,
and C, and note that the cube has 23 = 8 corners corresponding to the 23 possible combinations of A, B,
and C. The simplest product of literals in this case is 1, which is the product of 0 literals. Obviously, the
product 1 evaluates to 1 for any variable values. We can thus think of it as covering the entire domain of
the function. In the case of our example, the product 1 covers the whole cube. In order for the product 1 to
be an implicant of a function, the function itself must be the function 1.

What about a product consisting of a single literal, such as A or C? The dividing lines in the diagram
illustrate the answer: any such product term evaluates to 1 on a face of the cube, which includes 22 = 4 of
the corners. If a function evaluates to 1 on any of the six faces of the cube, the corresponding product term
(consisting of a single literal) is an implicant of the function.

Continuing with products of two literals, we see that any product of two literals, such as AB or BC,
corresponds to an edge of our 3-dimensional cube. The edge includes 2! = 2 corners. And, if a function
evaluates to 1 on any of the 12 edges of the cube, the corresponding product term (consisting of two literals)
is an implicant of the function.

Finally, any product of three literals, such as ABC, corresponds to a corner of the cube. But for a function
on three variables, these are just the minterms. As you know, if a function evaluates to 1 on any of the 8
corners of the cube, that minterm is an implicant of the function (we used this idea to construct the function
to prove logical completeness).

How do these connections help us to simplify functions? If we're careful, we can map cubes onto paper in
such a way that product terms (the possible implicants of the function) usually form contiguous groups of 1s,
allowing us to spot them easily. Let’s work upwards starting from one variable to see how this idea works.
The end result is called a Karnaugh map.

The first drawing shown to the right replicates our view of
the 1-dimensional hypercube, corresponding to the domain of a func-
tion on one variable, in this case the variable A. To the right of the o1 o 1
hypercube (line segment) are two variants of a Karnaugh map on one A0 Amt ‘ 0 ‘ 1 ‘ ‘ 0 ‘ 1 ‘
variable. The middle variant clearly indicates the column correspond-
ing to the product A (the other column corresponds to A). The right
variant simply labels the column with values for A.

AlA A A

The three drawings shown to the right illustrate the three possible AL A A
product terms on one variable. The functions shown in these Karnaugh 0o 1 0o 1 0o 1

maps are arbitrary, except that we have chosen them such that each ‘(1 1]‘ ‘ 0 “ “ 0 ‘
implicant shown is a prime implicant for the illustrated function. implicant: 1 implicant: A implicant: A

Let’s now look at two-variable functions. We have repli-

cated our drawing of the 2-dimensional hypercube (square) AlA A A
to the right along with two variants of Karnaugh maps on =~ se Ag=10 t g 1
two variables. With only two variables (A and B), the B Lot A
extension is fairly straightforward, since we can use the oo A:l B[l i o)1
second dimension of the paper (vertical) to express the

second variable (B).



6 (©2012 Steven S. Lumetta. All rights reserved.

The number of possible products of
literals grows rapidly with the num-
ber of variables. For two variables,

-2 -
1 0 1 0
nine are possible, as shown to the 0[1_3 00 @ 0@ 00

- OP]>

@
-

A
[
1
1
right. Notice that all implicants B[l & B[l B[l @iy B[l 0
have two properties. FiI‘St, they oc- implicant: 1 implicant: A implicant: A implicant: B implicant: B
cupy contiguous regions of the grid.

And, second, their height and width A A A A
are always powers of two. These o 1 o 1 o 1 o 1
properties seem somewhat trivial at 000 o0 e oot 0 0
this stage, but they are the key to B[l 0 B[l 00 B[l 0 B[l i
the utﬂjty of K-maps on more vari- implicant: AB implicant: AB implicant: AB implicant: AB
ables.

Three-variable functions are next. The B

cube diagram is again replicated to the ABC=000 AlA ABC=100

right. But now we have a problem: how c A AC
can we map four points (say, from the top e~ 0 01 1 10 0 01 11 10
half of the cube) into a line in such away | | | | | | | B ofo|1|1|0 g0t
that any points connected by a blue line are B B[l 10111 11|11
adjacent in the K-map? The answer is that T N I

we cannot, but we can preserve most of the ¢

connections by choosing an order such as heczo heem0

the one illustrated by the arrow. The result

is called a Gray code. Two K-map variants again appear to the right of the cube. Look closely at the order
of the two-variable combinations along the top, which allows us to have as many contiguous products of
literals as possible. Any product of literals that contains C' but not A nor A wraps around the edges of the
K-map, so you should think of it as rolling up into a cylinder rather than a grid. Or you can think that
we’re unfolding the cube to fit the corners onto a sheet of paper, but the place that we split the cube should
still be considered to be adjacent when looking for implicants. The use of a Gray code is the one difference
between a K-map and a Veitch chart; Veitch used the base 2 order, which makes some implicants hard to
spot.

With three variables, we have 27 possible products of literals. You may have noticed that the count scales
as 3V for N variables; can you explain why? We illustrate several product terms below. Note that we
sometimes need to wrap around the end of the K-map, but that if we account for wrapping, the squares
covered by all product terms are contiguous. Also notice that both the width and the height of all product
terms are powers of two. Any square or rectangle that meets these two constraints corresponds to a prod-
uct term! And any such square or rectangle that is filled with 1s is an implicant of the function in the K-map.

A A A
00 01 11 10 00 01 11 10 00 01 11 10 00 01 11

10
oft[1]2]1) o 1\ O |1/1 of1|o0|(t]1) of1]o0]1]f1) of1/0|1|1
Blala[1[1]a) e[ sf1oNa] B[afofa]o]1] 8[sfo[1]o]a) 8[sfo|@ o]

[ [ [ [ [
C C C C C
implicant: 1 implicant: C implicant: AB implicant: AC implicant: ABC

Let’s keep going. With a function on four variables—A, B, C, and D—we can use a Gray code order on two
of the variables in each dimension. Which variables go with which dimension in the grid really doesn’t matter,
so we’ll assign AB to the horizontal dimension and C'D to the vertical dimension. A few of the 81 possible
product terms are illustrated at the top of the next page. Notice that while wrapping can now occur in both
dimensions, we have exactly the same rule for finding implicants of the function: any square or rectangle (al-
lowing for wrapping) that is filled with 1s and has both height and width equal to (possibly different) powers
of two is an implicant of the function. Furthermore, unless such a square or rectangle is part of a larger
square or rectangle that meets these criteria, the corresponding implicant is a prime implicant of the function.
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AB AB AB AB AB AB
00 01 11 10 01 11 10 0 0L 11 10 00 01 11 10 00 01 11 10 00 01 11 10
of1]1]1][1)] owo|1|1]0 wof1[1lo o ol|f1)1]0 o o|1]|1]0 o o|1]|1]0
orff1]1]1]1 01|1 1)1 1| ol 0| 1]110 o O |1 1|0 o 0|1 |1/|0 o 0|1 |1/0

cD cD cD cD cD cD
a1 111 11[1 1)1 1J ul1[1]|0]o0 ul 1100 11@3 0o u{1l1]0]o0
o(|1]1]1]1] 0/ 0]1]0]1 0l 0\ 1|0)1 0] 0|1]o0o]1 0/ 0]1]0]1 0/0]|1]0
implicant: 1 implicant: D implicant: BD implicant: AB implicant: ACD implicant: ABCD

Finding a simple expression for a function using a K-map then consists of solving the following problem:
pick a minimal set of prime implicants such that every 1 produced by the function is covered by at least one
prime implicant. The metric that you choose to minimize the set may vary in practice, but for simplicity,
let’s say that we minimize the number of prime implicants chosen.

Let’s try a few! The table on the left below reproduces (from Notes Set 1.4) the truth table for addition of
two 2-bit unsigned numbers, A; Ag and By By, to produce a sum 515 and a carry out C'. K-maps for each
output bit appear to the right. The colors are used only to make the different prime implicants easier to
distinguish. The equations produced by summing these prime implicants appear below the K-maps.

inputs outputs
Al AO Bl Bo C Sl S() C A S, A S A
0 0 0 0 0 0 0 00 01 Agl 10 00 o1 Agl 10 00 01 Agl 10
o o0 o0 110 o 1 woflofo|o | 0| 0 (17 o ofN\|1/o
O 0 1 01]0 1 0 ap” olofi] o ap,” 0 o1 ap,” N ool
0 0 1 110 1 1 110(1_ﬂ 11[?010 ul 1/ o]0\
o 1 0 010 0 1 w/ o]of1]1] o@D oo 0 0 /1| 1\ 0
0 1 0 1 0 1 0 —
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0 c = AlBl+A1AOBO+AOBlBO
1 0 0 1 0 1 1
L0 1 0}p1 0 0 S1 = Ay By Bo+ Ay Ay Bi+A; Ay B1+ Ay By By +
1 0 1 1 1 0 1 - o

A; Ay B B A, Ay B B

1 1 0 0 0 1 1 1 Ao b1 bo + A1 Ao D1 Do
1 1 0 1 1 0 0 _
1 1 1 o011 o0 1 So = Ao Bo+ Ao Bo
1 1 1 1 1 1 0

In theory, K-maps extend to an arbitrary number of variables. Certainly Gray codes can be extended. An
N-bit Gray code is a sequence of N-bit patterns that includes all possible patterns such that any two
adjacent patterns differ in only one bit. The code is actually a cycle: the first and last patterns also differ
in only one bit. You can construct a Gray code recursively as follows: for an (N 4 1)-bit Gray code, write
the sequence for an N-bit Gray code, then add a 0 in front of all patterns. After this sequence, append a
second copy of the N-bit Gray code in reverse order, then put a 1 in front of all patterns in the second copy.
The result is an (N 4 1)-bit Gray code. For example, the following are Gray codes:

1-bit 0,1

2-bit 00, 01, 11, 10

3-bit 000, 001, 011, 010, 110, 111, 101, 100

4-bit 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000

Unfortunately, some of the beneficial properties of K-maps do not extend beyond two variables in a di-
mension. Once you have three variables in one dimension, as is necessary if a function operates on five or
more variables, not all product terms are contiguous in the grid. The terms still require a total number of
rows and columns equal to a power of two, but they don’t all need to be a contiguous group. Furthermore,
some contiguous groups of appropriate size do not correspond to product terms. So you can still make use of
K-maps if you have more variables, but their use is a little trickier.
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Canonical Forms

What if we want to compare two expressions to determine whether they represent the same logic function?
Such a comparison is a test of logical equivalence, and is an important part of hardware design. Tools
today provide help with this problem, but you should understand the problem.

You know that any given function can be expressed in many ways, and that two expressions that look quite
different may in fact represent the same function (look back at Equations (1) to (3) for an example). But
what if we rewrite the function using only prime implicants? Is the result unique? Unfortunately, no.

In general, a sum of products is not unique (nor is a product of sums), even if the sum
contains only prime implicants.

For example, consensus terms may or may not be included in our expressions. (They z BC

are necessary for reliable design of certain types of systems, as you will learn in a ©_ o1 10

later ECE class.) The green ellipse in the K-map to the right represents the consensus Al oQs ;, 0

term BC. 10 E&\l 1
Z = AC+AB+BC

Z = AC+AB

Some functions allow several equivalent formulations as sums of z b z .
prime implicants, even without consensus terms. The K-maps 0 o1 10 0 0 110
shown to the right, for example, illustrate how one function o o111 Jfl o 0f1(1]1
might be written in either of the following ways: alof1Yol 1 aloV1)o/1
AB . r S AB 5 = A
. - — 1)1 1)1
7 = ABD+ACD+ABC+BCD HAC R GIES
_ — - olojofo olofo]o
7 = ABC+BCD+ABD+ACD e ‘

When we need to compare two things (such as functions), we need to transform them into what in math-
ematics is known as a canonical form, which simply means a form that is defined so as to be unique for
each thing of the given type. What can we use for logic functions? You already know two answers! The
canonical sum of a function (sometimes called the canonical SOP form) is the sum of minterms. The
canonical product of a function (sometimes called the canonical POS form) is the product of maxterms.
These forms technically only meet the mathematical definition of canonical if we agree on an order for the
min/maxterms, but that problem is solvable. However, as you already know, the forms are not particularly
convenient to use. In practice, people and tools in the industry use more compact approaches when compar-
ing functions, but those solutions are a subject for a later class (such as ECE 462).

Two-Level Logic

Two-level logic is a popular way of expressing logic functions. The two levels refer
simply to the number of functions through which an input passes to reach an output, and A
both the SOP and POS forms are examples of two-level logic. In this section, we illustrate :D c
one of the reasons for this popularity and show you how to graphically manipulate
expressions, which can sometimes help when trying to understand gate diagrams.

ij

We begin with one of DeMorgan’s laws, which we can illustrate both algebraically and
graphically: C = B+A = B A
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Let’s say that we have a function expressed in SOP form, such as Z = ABC + DE + FGHJ. The diagram
on the left below shows the function constructed from three AND gates and an OR gate. Using DeMorgan’s
law, we can replace the OR gate with a NAND with inverted inputs. But the bubbles that correspond to
inversion do not need to sit at the input to the gate. We can invert at any point along the wire, so we slide
each bubble down the wire to the output of the first column of AND gates. Be careful: if the wire splits,
which does not happen in our example, you have to replicate the inverter onto the other output paths as you
slide past the split point! The end result is shown on the right: we have not changed the function, but now
we use only NAND gates. Since CMOS technology only supports NAND and NOR directly, using two-level
logic makes it simple to map our expression into CMOS gates.

A —] A —] A —]

B — B — B —]

C —i C —i C —i

D —j D —j D —j

z z z

E — E —] E —]

Fy Fy Fy

G ] G| G|

H f first, we replace H f next, we slide these H f we now have the same
J this OR gate J inversion bubbles J function (SOP form)

using DeMorgan’s law down the wires to the left implemented with NAND gates

SIDs
C
You may want to make use of DeMorgan’s other law, illustrated graphically to the right, 5
to perform the same transformation on a POS expression. What do you get?
=
c
B

Multi-Metric Optimization

As engineers, almost every real problem that you encounter will admit multiple metrics for evaluating possible
designs. Becoming a good engineer thus requires not only that you be able to solve problems creatively so
as to improve the quality of your solutions, but also that you are aware of how people might evaluate those
solutions and are able both to identify the most important metrics and to balance your design effectively
according to them. In this section, we introduce some general ideas and methods that may be of use to you
in this regard. We will not test you on the concepts in this section.

When you start thinking about a new problem, your first step should be to think carefully about metrics
of possible interest. Some important metrics may not be easy to quantify. For example, compatibility of
a design with other products already owned by a customer has frequently defined the success or failure of
computer hardware and software solutions. But how can you compute the compability of your approach as
a number?

Humans—including engineers—are not good at comparing multiple metrics simultaneously. Thus, once you
have a set of metrics that you feel is complete, your next step is to get rid of as many as you can. Towards
this end, you may identify metrics that have no practical impact in current technology, set threshold values
for other metrics to simplify reasoning about them, eliminate redundant metrics, calculate linear sums to
reduce the count of metrics, and, finally, make use of the notion of Pareto optimality. All of these ideas are
described in the rest of this section.

Let’s start by considering metrics that we can quantify as real numbers. For a given metric, we can divide
possible measurement values into three ranges. In the first range, all measurement values are equivalently
useful. In the second range, possible values are ordered and interesting with respect to one another. Values
in the third range are all impossible to use in practice. Using power consumption as our example, the first
range corresponds to systems in which when a processor’s power consumption in a digital system is extremely
low relative to the power consumption of the system. For example, the processor in a computer might use
less than 1% of the total used by the system including the disk drive, the monitor, the power supply, and so
forth. One power consumption value in this range is just as good as any another, and no one cares about the
power consumption of the processor in such cases. In the second range, power consumption of the processor
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makes a difference. Cell phones use most of their energy in radio operation, for example, but if you own
a phone with a powerful processor, you may have noticed that you can turn off the phone and drain the
battery fairly quickly by playing a game. Designing a processor that uses half as much power lengthens the
battery life in such cases. Finally, the third region of power consumption measurements is impossible: if you
use so much power, your chip will overheat or even burst into flames. Consumers get unhappy when such
things happen.

As a first step, you can remove any metrics for which all solutions are effectively equivalent. Until a little
less than a decade ago, for example, the power consumption of a desktop processor actually was in the first
range that we discussed. Power was simply not a concern to engineers: all designs of interest consumed so
little power that no one cared. Unfortunately, at that point, power consumption jumped into the third range
rather quickly. Processors hit a wall, and products had to be cancelled. Given that the time spent designing
a processor has historically been about five years, a lot of engineering effort was wasted because people had
not thought carefully enough about power (since it had never mattered in the past). Today, power is an
important metric that engineers must take into account in their designs.

However, in some areas, such as desktop and high-end server processors, other metrics (such as performance)
may be so important that we always want to operate at the edge of the interesting range. In such cases,
we might choose to treat a metric such as power consumption as a threshold: stay below 150 Watts for a
desktop processor, for example. One still has to make a coordinated effort to ensure that the system as a
whole does not exceed the threshold, but reasoning about threshold values, a form of constraint, is easier
than trying to think about multiple metrics at once.

Some metrics may only allow discrete quantification. For example, one could choose to define compatibility
with previous processor generations as binary: either an existing piece of software (or operating system) runs
out of the box on your new processor, or it does not. If you want people who own that software to make use
of your new processor, you must ensure that the value of this binary metric is 1, which can also be viewed
as a threshold.

In some cases, two metrics may be strongly correlated, meaning that a design that is good for one of the
metrics is frequently good for the other metric as well. Chip area and cost, for example, are technically
distinct ways to measure a digital design, but we rarely consider them separately. A design that requires a
larger chip is probably more complex, and thus takes more engineering time to get right (engineering time
costs money). Each silicon wafer costs money to fabricate, and fewer copies of a large design fit on one
wafer, so large chips mean more fabrication cost. Physical defects in silicon can cause some chips not to
work. A large chip uses more silicon than a small one, and is thus more likely to suffer from defects (and
not work). Cost thus goes up again for large chips relative to small ones. Finally, large chips usually require
more careful testing to ensure that they work properly (even ignoring the cost of getting the design right,
we have to test for the presence of defects), which adds still more cost for a larger chip. All of these factors
tend to correlate chip area and chip cost, to the point that most engineers do not consider both metrics.

After you have tried to reduce your set of metrics as much as possible, or simplified them by turning them into
thresholds, you should consider turning the last few metrics into a weighted linear sum. All remaining metrics
must be quantifiable in this case. For example, if you are left with three metrics for which a given design has
values A, B, and C, you might reduce these to one metric by calculating D = wa A + wpB + wcC. What
are the w values? They are weights for the three metrics. Their values represent the relative importance of
the three metrics to the overall evaluation. Here we’ve assumed that larger values of A, B, and C are either
all good or all bad. If you have metrics with different senses, use the reciprocal values. For example, if a
large value of A is good, a small value of 1/A is also good.

The difficulty with linearizing metrics is that not everyone agrees on the weights. Is using less power more
important than having a cheaper chip? The answer may depend on many factors.

When you are left with several metrics of interest, you can use the idea of Pareto optimality to identify
interesting designs. Let’s say that you have two metrics. If a design D; is better than a second design Do
for both metrics, we say that D; dominates Dy. A design D is then said to be Pareto optimal if no other
design dominates D. Consider the figure on the left below, which illustrates seven possible designs measured
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with two metrics. The design corresponding to point B dominates the designs corresponding to points A
and C, so neither of the latter designs is Pareto optimal. No other point in the figure dominates B, however,
so that design is Pareto optimal. If we remove all points that do not represent Pareto optimal designs, and
instead include only those designs that are Pareto optimal, we obtain the version shown on the right. These
are points in a two-dimensional space, not a line, but we can imagine a line going through the points, as
illustrated in the figure: the points that make up the line are called a Pareto curve, or, if you have more
than two metrics, a Pareto surface.

good good
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B ° B
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o |
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ce °
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dominated
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bad , bad
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As an example of the use of Pareto optimality, consider
the figure to the right, which is copied with permission
from Neal Crago’s Ph.D. dissertation (UIUC ECE,
2012). The figure compares hundreds of thousands of
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when executing a set of benchmark applications, nor-
malized to a baseline processor design. The vertical
axis measures the energy consumed by a design when
executing the same benchmarks, normalized again to the energy consumed by a baseline design. The six
sets of points in the graph represent alternative design techniques for the processor, most of which are in
commercial use today. The points shown for each set are the subset of many thousands of possible variants
that are Pareto optimal. In this case, more performance and less energy consumption are the good directions,
so any point in a set for which another point is both further to the right and further down is not shown in the
graph. The black line represents an absolute power consumption of 150 Watts, which is a nominal threshold
for a desktop environment. Designs above and to the right of that line are not as interesting for desktop use.
The design-space exploration that Neal reported in this figure was of course done by many computers
using many hours of computation, but he had to design the process by which the computers calculated each
of the points.
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ECE199JL: Introduction to Computer Engineering Fall 2012
Notes Set 2.2

Boolean Properties and Don’t Care Simplification

This set of notes begins with a brief illustration of a few properties of Boolean logic, which may be of use
to you in manipulating algebraic expressions and in identifying equivalent logic functions without resorting
to truth tables. We then discuss the value of underspecifying a logic function so as to allow for selection of
the simplest possible implementation. This technique must be used carefully to avoid incorrect behavior, so
we illustrate the possibility of misuse with an example, then talk about several ways of solving the example
correctly. We conclude by generalizing the ideas in the example to several important application areas and
talking about related problems.

Logic Properties

Table 1 (on the next page) lists a number of properties of Boolean logic. Most of these are easy to derive
from our earlier definitions, but a few may be surprising to you. In particular, in the algebra of real numbers,
multiplication distributes over addition, but addition does not distribute over multiplication. For example,
3X4+7)=0Bx4)+Bx7),but 3+(4x7) #(3+4)x (3+7). In Boolean algebra, both operators
distribute over one another, as indicated in Table 1. The consensus properties may also be nonintuitive.
Drawing a K-map may help you understand the consensus property on the right side of the table. For the
consensus variant on the left side of the table, consider that since either A or A must be 0, either B or C
or both must be 1 for the first two factors on the left to be 1 when ANDed together. But in that case, the
third factor is also 1, and is thus redundant.

As mentioned previously, Boolean algebra has an elegant symmetry known as a duality, in which any logic
statement (an expression or an equation) is related to a second logic statement. To calculate the dual
form of a Boolean expression or equation, replace 0 with 1, replace 1 with 0, replace AND with OR, and
replace OR with AND. Variables are not changed when finding the dual form. The dual form of a dual form is
the original logic statement. Be careful when calculating a dual form: our convention for ordering arithmetic
operations is broken by the exchange, so you may want to add explicit parentheses before calculating the
dual. For example, the dual of AB + C is not A + BC. Rather, the dual of AB 4+ C is (A + B)C. Add

parentheses as necessary when calculating a dual form to ensure that the order of operations does not change.

Duality has several useful practical applications. First, the principle of duality states that any theorem
or identity has the same truth value in dual form (we do not prove the principle here). The rows of Table 1
are organized according to this principle: each row contains two equations that are the duals of one another.
Second, the dual form is useful when designing certain types of logic, such as the networks of transistors
connecting the output of a CMOS gate to high voltage and ground. If you look at the gate designs in the
textbook (and particularly those in the exercises), you will notice that these networks are duals. A func-
tion/expression is not a theorem nor an identity, thus the principle of duality does not apply to the dual
of an expression. However, if you treat the value 0 as “true,” the dual form of an expression has the same
truth values as the original (operating with value 1 as “true”). Finally, you can calculate the complement
of a Boolean function (any expression) by calculating the dual form and then complementing each variable.

Choosing the Best Function

When we specify how something works using a human language, we leave out details. Sometimes we do so
deliberately, assuming that a reader or listener can provide the details themselves: “Take me to the airport!”
rather than “Please bend your right arm at the elbow and shift your right upper arm forward so as to place
your hand near the ignition key. Next, ...”

You know the basic technique for implementing a Boolean function using combinational logic: use a K-map
to identify a reasonable SOP or POS form, draw the resulting design, and perhaps convert to NAND/NOR
gates.
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1+4A4=1 0-A=0

1-A=A 0+A=A

A+A=A A-A=A

A-A=0 A+A=1

A+B=AB AB=A+B DeMorgan’s laws
(A+ B)C = AC + BC AB+C=(A+C)(B+0C) distribution
(A+B)(A+C)(B+C)=(A+B)(A+C) AB+AC+BC=AB+AC consensus

Table 1: Boolean logic properties. The two columns are dual forms of one another.

When we develop combinational logic designs, we may also choose to leave some aspects unspecified. In
particular, the value of a Boolean logic function to be implemented may not matter for some input combi-
nations. If we express the function as a truth table, we may choose to mark the function’s value for some

[

input combinations as “don’t care,” which is written as “x” (no quotes).

What is the benefit of using “don’t care” values? Using “don’t care” values allows you to choose from
among several possible logic functions, all of which produce the desired results (as well as some combination
of 0s and 1s in place of the “don’t care” values). Each input combination marked as “don’t care” doubles
the number of functions that can be chosen to implement the design, often enabling the logic needed for
implementation to be simpler.

For example, the K-map to the right specifies a function F(A, B,C) with two “don’t F AB
care” entries. If you are asked to design combinational logic for this function, you can oo
choose any values for the two “don’t care” entries. When identifying prime implicants, c
each “x” can either be a 0 or a 1.

Depending on the choices made for the x’s, we obtain one of the following four functions:

F = AB+BC F AB

I _— 01 11 10
F = AB+BC+ABC Coo 1 %
F = B . 110|110
F B+AC

Given this set of choices, a designer typically chooses the third: F' = B, which corresponds to the K-map
shown to the right of the equations. The design then produces F = 1 when A =1, B=1,and C =0
(ABC = 110), and produces F' = 0 when A =1, B =10, and C = 0 (ABC = 100). These differences are
marked with shading and green italics in the new K-map. No implementation ever produces an “x.”

Caring about Don’t Cares

What can go wrong? In the context of a digital system, unspecified details may or may not be important.
However, any implementation of a specification implies decisions about these details, so decisions should
only be left unspecified if any of the possible answers is indeed acceptable.

As a concrete example, let’s design logic to control an ice cream dispenser. The dispenser has two flavors,
lychee and mango, but also allows us to create a blend of the two flavors. For each of the two flavors,
our logic must output two bits to control the amount of ice cream that comes out of the dispenser. The
two-bit C[1 : 0] output of our logic must specify the number of half-servings of lychee ice cream as a binary
number, and the two-bit Cjs[1 : 0] output must specify the number of half-servings of mango ice cream.
Thus, for either flavor, 00 indicates none of that flavor, 01 indicates one-half of a serving, and 10 indicates
a full serving.

Inputs to our logic will consist of three buttons: an L button to request a serving of lychee ice cream,
a B button to request a blend—half a serving of each flavor, and an M button to request a serving of mango
ice cream. Each button produces a 1 when pressed and a 0 when not pressed.
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Let’s start with the assumption that the user only presses one button at a time. In this case, we can treat
input combinations in which more than one button is pressed as “don’t care” values in the truth tables for
the outputs. K-maps for all four output bits appear below. The x’s indicate “don’t care” values.

ol LB oo LB cuill 1B culo] LB
o1 11 10 0 01 11 10 0 01 11 10 o1 11 10
ofo|o|x|1 ofo|1|x|o0 000]0|x |0 ofo|1|x|o0
M M M M
11 0| x| x| x 11 0| x | x| x 1] x|x|x 11 0| x | x| x

When we calculate the logic function for an output, each “don’t care” value can be treated as either 0 or 1,
whichever is more convenient in terms of creating the logic. In the case of C[1], for example, we can treat
the three x’s in the ellipse as 1s, treat the x outside of the ellipse as a 0, and simply use M (the implicant
represented by the ellipse) for Cas[1]. The other three output bits are left as an exercise, although the result
appears momentarily.

The implementation at right takes full advantage of the “don’t care”
parts of our specification. In this case, we require no logic at all; we
need merely connect the inputs to the correct outputs. Let’s verify the
operation. We have four cases to consider. First, if none of the buttons
are pushed (LBM = 000), we get no ice cream, as desired (Cps = 00 B— ¢
and Cr, = 00). Second, if we request lychee ice cream (LBM = 100), (blend of two flavors)
the outputs are C;, = 10 and Cj; = 00, so we get a full serving of
lychee and no mango. Third, if we request a blend (LBM = 010), the

Ci[1]
CL[0]
(lychee output control)

L
(lychee flavor)

M-
outputs are C, = 01 and Cjy = 01, giving us half a serving of each (mango flavor) g:{(l)}
flavor. Finally, if we request mango ice cream (LBM = 001), we get (méango outpu control)

no lychee but a full serving of mango.

The K-maps for this implementation appear below. Each of the “don’t care” x’s from the original design
has been replaced with either a 0 or a 1 and highlighted with shading and green italics. Any implementation
produces either 0 or 1 for every output bit for every possible input combination.

Ci1] LB CL[0] LB Cum[1] LB Cum[0] LB
01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
ofo|o|1]1 ofo|1]|1]0 ofo|lo|0]oO ofo|1]|1]0
M M M M
110|011 i1of1]1/|0 11211 11of1]1/0

As you can see, leveraging “don’t care” output bits can sometimes significantly simplify our logic. In the
case of this example, we were able to completely eliminate any need for gates! Unfortunately, the resulting
implementation may sometimes produce unexpected results. Based on the implementation, what happens if
a user presses more than one button? The ice cream cup overflows!

Let’s see why. Consider the case LBM = 101, in which we’ve pressed both the lychee and mango buttons.
Here C, = 10 and Cj; = 10, so our dispenser releases a full serving of each flavor, or two servings total.
Pressing other combinations may have other repercussions as well. Consider pressing lychee and blend
(LBM = 110). The outputs are then C, = 11 and Cp; = 01. Hopefully the dispenser simply gives us one
and a half servings of lychee and a half serving of mango. However, if the person who designed the dispenser
assumed that no one would ever ask for more than one serving, something worse might happen. In other
words, giving an input of C;, = 11 to the ice cream dispenser may lead to other unexpected behavior if its
designer decided that that input pattern was a “don’t care.”

The root of the problem is that while we don’t care about the value of any particular output marked “x” for
any particular input combination, we do actually care about the relationship between the outputs.

What can we do? When in doubt, it is safest to make choices and to add the new decisions to the specification
rather than leaving output values specified as “don’t care.” For our ice cream dispenser logic, rather than
leaving the outputs unspecified whenever a user presses more than one button, we could choose an acceptable
outcome for each input combination and replace the x’s with Os and 1s. We might, for example, decide to
produce lychee ice cream whenever the lychee button is pressed, regardless of other buttons (LBM = lzx,
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which means that we don’t care about the inputs B and M, so LBM = 100, LBM = 101, LBM = 110,
or LBM = 111). That decision alone covers three of the four unspecified input patterns. We might also de-
cide that when the blend and mango buttons are pushed together (but without the lychee button, LBM=011),
our logic produces a blend. The resulting K-maps are shown below, again with shading and green italics
identifying the combinations in which our original design specified “don’t care.”

Ci1] LB CL[q] LB Cum[1] LB Cum[0] LB
01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
ofo|0|1|1 ofo[1]|0]|o0 ofo|[0|0]|O ofo[1]|0]|o0
M M M M
110(0]1]1 110(12/0]|0 111/0/0]|0 110(2/0]|0

The logic in the dashed box to the P Tt !
right implements the set of choices just (lychee flavor)
discussed, and matches the K-maps
above. Based on our additional choices,
this implementation enforces a strict
priority scheme on the user’s button (blend of two flavors)
presses. If a user requests lychee, they
can also press either or both of the cm

other buttons with no effect. The lychee (mangoflavory L | Cu[0]
button has priority. Similarly, if the this logic prioritizes the buttons (mango output control)
user does not press lychee, but press- and passes only one at any time

es the blend button, pressing the mango button at the same time has no effect. Choosing mango requires
that no other buttons be pressed. We have thus chosen a prioritization order for the buttons and imposed
this order on the design.

Ci[1]
CL[0]
(lychee output control)

We can view this same implementation in another way. Note the one-to-one correspondence between inputs
(on the left) and outputs (on the right) for the dashed box. This logic takes the user’s button presses and
chooses at most one of the buttons to pass along to our original controller implementation (to the right of the
dashed box). In other words, rather than thinking of the logic in the dashed box as implementing a specific
set of decisions, we can think of the logic as cleaning up the inputs to ensure that only valid combinations
are passed to our original implementation. Once the inputs are cleaned up, the original implementation is
acceptable, because input combinations containing more than a single 1 are in fact impossible.

Strict prioritization is one useful way to clean up our inputs. In general, we can design logic to map each
of the four undesirable input patterns into one of the permissible combinations (the four that we specified
explicitly in our original design, with LBM in the set {000,001,010,100}). Selecting a prioritization scheme
is just one approach for making these choices in a way that is easy for a user to understand and is fairly easy
to implement.

A second simple approach is to ignore 0 ooooioooooooooo-o-oooo !

illegal combinations by mapping them ) e
into the “no buttons pressed” input pat- ! Cu[0]

tern. Such an implementation appears (lychee output control)
to the right, laid out to show that one
can again view the logic in the dashed
box either as cleaning up the inputs (by
mentally grouping the logic with the in-

(lychee flavor)

B
(blend of two flavors)

puts) or as a specific set of choices for our Cu[1]
“don’t care” output values (by grouping (mang'\élﬂavor) . ‘ Cu[0]
the logic with the outputs). In either thislogic allows only a single (mango output control)

. button to be pressed at any time
case, the logic shown enforces our as- P Y

sumptions in a fairly conservative way: if a user presses more than one button, the logic squashes all button
presses. Only a single 1 value at a time can pass through to the wires on the right of the figure.
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For completeness, the K-maps corresponding to this implementation are given here.

Ci1] LB CL[0] LB Cm[1] LB Cum[0] LB
01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
ofo|lo0|0]1 ofo|1]|0]0 ofo|lo|0]oO ofo|1]|0]0
M M M M
11o[0[0|0 11o0[0[0|0 111/0[00 11o0[0[0|0

Generalizations and Applications

The approaches that we illustrated to clean up the input signals to our design have application in many
areas. The ideas in this section are drawn from the field and are sometimes the subjects of later classes, but
are not exam material for our class.

Prioritization of distinct inputs is used to arbitrate between devices attached to a processor. Processors
typically execute much more quickly than do devices. When a device needs attention, the device signals
the processor by changing the voltage on an interrupt line (the name comes from the idea that the device
interrupts the processor’s current activity, such as running a user program). However, more than one device
may need the attention of the processor simultaneously, so a priority encoder is used to impose a strict order
on the devices and to tell the processor about their needs one at a time. If you want to learn more about
this application, take ECE391.

When components are designed together, assuming that some input patterns do not occur is common practice,
since such assumptions can dramatically reduce the number of gates required, improve performance, reduce
power consumption, and so forth. As a side effect, when we want to test a chip to make sure that no defects
or other problems prevent the chip from operating correctly, we have to be careful so as not to “test” bit
patterns that should never occur in practice. Making up random bit patterns is easy, but can produce bad
results or even destroy the chip if some parts of the design have assumed that a combination produced
randomly can never occur. To avoid these problems, designers add extra logic that changes the disallowed
patterns into allowed patterns, just as we did with our design. The use of random bit patterns is common
in Built-In Self Test (BIST), and so the process of inserting extra logic to avoid problems is called BIST
hardening. BIST hardening can add 10-20% additional logic to a design. Our graduate class on digital
system testing, ECE543, covers this material, but has not been offered recently.
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ECE199JL: Introduction to Computer Engineering Fall 2012
Notes Set 2.3

Example: Bit-Sliced Addition

In this set of notes, we illustrate basic logic design using integer addition as an example. By recognizing
and mimicking the structured approach used by humans to perform addition, we introduce an important
abstraction for logic design. We follow this approach to design an adder known as a ripple-carry adder,
then discuss some of the implications of the approach and highlight how the same approach can be used in
software. In the next set of notes, we use the same technique to design a comparator for two integers.

One Bit at a Time

Many of the operations that we want to perform on groups of bits can be broken down into repeated
operations on individual bits. When we add two binary numbers, for example, we first add the least
significant bits, then move to the second least significant, and so on. As we go, we may need to carry from
lower bits into higher bits. When we compare two (unsigned) binary numbers with the same number of bits,
we usually start with the most significant bits and move downward in significance until we find a difference
or reach the end of the two numbers. In the latter case, the two numbers are equal.

When we build combinational logic to implement this kind of calculation, our approach as humans can be
leveraged as an abstraction technique. Rather than building and optimizing a different Boolean function for
an 8-bit adder, a 9-bit adder, a 12-bit adder, and any other size that we might want, we can instead design
a circuit that adds a single bit and passes any necessary information into another copy of itself. By using
copies of this bit-sliced adder circuit, we can mimic our approach as humans and build adders of any size,
just as we expect that a human could add two binary numbers of any size. The resulting designs are, of
course, slightly less efficient than designs that are optimized for their specific purpose (such as adding two
17-bit numbers), but the simplicity of the approach makes the tradeoff an interesting one.

Abstracting the Human Process

Think about how we as humans add two N-bit numbers, A and B. An
illustration appears to the right, using N = 8. For now, let’s assume caryC 0011001 1(0)
that our numbers are stored in an unsigned representation. As you A 00111011
know, addition for 2’s complement is identical except for the calculation

of overflow. We start adding from the least significant bit and move B+00110001

to the left. Since adding two 1s can overflow a single bit, we carry a 1 sumS 01101100
when necessary into the next column. Thus, in general, we are actually -
adding three input bits. The carry from the previous column is usually information flows
not written explicitly by humans, but in a digital system we need to in this direction

write a 0 instead of leaving the value blank.

Focus now on the addition of a single column. Except for the first
and last bits, which we might choose to handle slightly differently, the
addition process is identical for any column. We add a carry in bit
(possibly 0) with one bit from each of our numbers to produce a sum j {
bit and a carry out bit for the next column. Column addition is the

task that our bit slice logic must perform. ad derB

The diagram to the right shows an abstract model of our adder bit e Cou SHSEM o ¢
slice. The inputs from the next least significant bit come in from the s

right. We include arrowheads because figures are usually drawn with

inputs coming from the top or left and outputs going to the bottom or

right. Outside of the bit slice logic, we index the carry bits using the Su
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bit number. The bit slice has C™ provided as an input and produces CM*! as an output. Internally, we
use Cj, to denote the carry input, and C,,: to denote the carry output. Similarly, the bits Ay, and By
from the numbers A and B are represented internally as A and B, and the bit Sy, produced for the sum S is
represented internally as S. The overloading of meaning should not confuse you, since the context (designing
the logic block or thinking about the problem as a whole) should always be clear.

The abstract device for adding three inputs bits and producing two output bits is called a full adder. You
may also encounter the term half adder, which adds only two input bits. To form an N-bit adder, we
integrate N copies of the full adder—the bit slice that we design next—as shown below. The result is called
a ripple carry adder because the carry information moves from the low bits to the high bits slowly, like a
ripple on the surface of a pond.

an N-bit adder composed of bit slices

An-1 Bn-1 An-2 Bn-2 A1 B1 Ao Bo
A B A B A B A B
" adder ot adder c? adder ct adder
~—Cout bit Cin Cout bit Cin PR ~—1Cou bit Cin Cout bit Cin [«—0
slice N-1 slice N-2 slice 1 slice 0
S S S S
Sn-1 Sn-2 S So

Designing the Logic

Now we are ready to design our adder bit slice. Let’s start by writing a truth table for C;, and S, as shown
on the left below. To the right of the truth tables are K-maps for each output, and equations for each output
are then shown to the right of the K-maps. We suggest that you work through identification of the prime
implicants in the K-maps and check your work with the equations.

A B O'L Oout S Cout AB

0 O 0 0 0 00 01 11 10

0 1 0 0 1 o 0ojojjo Cout = AB+ACy, +BC,
0 0 1 0 1 "Jol1] 11

0 1 1 1 0

1 0 0 0 1 S AB S = ABC,u+ABCy;+
1 0 1 1 O 00 01 11 10 _ o

1 1 0 1 0 R R A B Cout + A B Cous
1 1 1 1 1 i1jo0j1jo = A®B® Cou

The equation for C,,; implements a majority function on three bits. In particular, a carry is produced
whenever at least two out of the three input bits (a majority) are 1s. Why do we mention this name?
Although we know that we can build any logic function from NAND gates, common functions such as those
used to add numbers may benefit from optimization. Imagine that in some technology, creating a majority
function directly may produce a better result than implementing such a function from logic gates. In such
a case, we want the person designing the circuit to know that can make use of such an improvement. We
rewrote the equation for S to make use of the XOR operation for a similar reason: the implementation of
XOR gates from transistors may be slightly better than the implementation of XOR based on NAND gates.
If a circuit designer provides an optimized variant of XOR, we want our design to make use of the optimized
version.
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an adder bit slice (known as a "full adder") an adder bit slice using NAND gates
A A >:
B—o | Cout B—o | )7 )7 Cout
Cin Cin :
;E} s ;E} s

The gate diagrams above implement a single bit slice for an adder. The version on the left uses AND and
OR gates (and an XOR for the sum), while the version on the right uses NAND gates, leaving the XOR as
an XOR.

Let’s discuss the design in terms of area and speed. As an estimate of area, we can count gates, remembering
that we need two transistors per input on a gate. For each bit, we need three 2-input NAND gates, one
3-input NAND gate, and a 3-input XOR gate (a big gate; around 30 transistors). For speed, we make rough
estimates in terms of the amount of time it takes for a CMOS gate to change its output once its input has
changed. This amount of time is called a gate delay. We can thus estimate our design’s speed by simply
counting the maximum number of gates on any path from input to output. For this measurement, using a
NAND/NOR representation of the design is important to getting the right answer. Here we have two gate
delays from any of the inputs to the C,,¢ output. The XOR gate may be a little slower, but none of its
inputs come from other gates anyway. When we connect multiple copies of our bit slice logic together to
form an adder, the A and B inputs to the outputs is not as important as the delay from Cj,, to the outputs.
The latter delay adds to the total delay of our comparator on a per-bit-slice basis—this propagation delay
gives rise to the name “ripple carry.” Looking again at the diagram, notice that we have two gate delays
from Cj, to Coyi. The total delay for an N-bit comparator based on this implementation is thus two gate
delays per bit, for a total of 2N gate delays.

Adders and Word Size

Now that we know how to build an N-bit adder, we can add some detail to the
diagram that we drew when we introduced 2’s complement back in Notes Set 1.2, as
shown to the right. The adder is important enough to computer systems to merit
its own symbol in logic diagrams, which is shown to the right with the inputs and
outputs from our design added as labels. The text in the middle marking the
symbol as an adder is only included for clarity: any time you see a symbol of the
shape shown to the right, it is an adder (or sometimes a device that can add and
do other operations). The width of the operand input and output lines then tells
you the size of the adder.

You may already know that most computers have a word size specified as part of the Instruction Set
Architecture. The word size specifies the number of bits in each operand when the computer adds two
numbers, and is often used widely within the microarchitecture as well (for example, to decide the number of
wires to use when moving bits around). Most desktop and laptop machines now have a word size of 64 bits,
but many phone processors (and desktops/laptops a few years ago) use a 32-bit word size. Embedded
microcontrollers may use a 16-bit or even an 8-bit word size.
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Having seen how we can build an N-bit adder from simple chunks
of logic operating on each pair of bits, you should not have much
difficulty in understanding the diagram to the right. If we start with
a design for an N-bit adder—even if that design is not built from
bit slices, but is instead optimized for that particular size—we can
create a 2N-bit adder by simply connecting two copies of the N-bit
adder. We give the adder for the less significant bits (the one on the
right in the figure) an initial carry of 0, and pass the carry produced
by the adder for the less significant bits into the carry input of the
adder for the more significant bits. We calculate overflow based on
the results of the adder for more significant bits (the one on the left
in the figure), using the method appropriate to the type of operands
we are adding (either unsigned or 2’s complement).

You should also realize that this connection need not be physical. In other words, if a computer has an N-bit
adder, it can handle operands with 2N bits (or 3N, or 10N, or 42N) by using the N-bit adder repeatedly,
starting with the least significant bits and working upward until all of the bits have been added. The
computer must of course arrange to have the operands routed to the adder a few bits at a time, and must
ensure that the carry produced by each addition is then delivered to the carry input (of the same adder!) for
the next addition. In the coming months, you will learn how to design hardware that allows you to manage
bits in this way, so that by the end of our class, you will be able to design a simple computer on your own.
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Example: Bit-Sliced Comparison

This set of notes develops comparators for unsigned and 2’s complement numbers using the bit-sliced ap-
proach that we introduced in Notes Set 2.3. We then use algebraic manipulation and variation of the internal
representation to illustrate design tradeoffs.

Comparing Two Numbers

Let’s begin by thinking about how we as humans compare two N-bit num-
bers, A and B. An illustration appears to the right, using N = 8. For now,
let’s assume that our numbers are stored in an unsigned representation, so
we can just think of them as binary numbers with leading 0s. We handle
2’s complement values later in these notes. A7AcAsALAAA Ay

humans usually compare
inthisdirection

_

As humans, we typically start comparing at the most significant bit. After all, A 00001001
if we find a difference in that bit, we are done, saving ourselves some time. In B 00010 001
the example to the right, we know that A < B as soon as we reach bit 4 and B.B.B.B.B.B.B.B

) - . 7BeP5B4B3B,B1 By
observe that A4 < By. If we instead start from the least significant bit, we

must always look at all of the bits. -
let’s design logic that
When building hardware to compare all of the bits at once, however, hardware compares in this direction

for comparing each bit must exist, and the final result must be able to consider

all of the bits. Our choice of direction should thus instead depend on how effectively we can build the
corresponding functions. For a single bit slice, the two directions are almost identical. Let’s develop a bit
slice for comparing from least to most significant.

An Abstract Model

Comparison of two numbers, A and B, can produce three possible answers: A < B, A = B, or A > B (one
can also build an equality comparator that combines the A < B and A > B cases into a single answer).

As we move from bit to bit in our design, how much information needs to pass from one bit to the next? Here
you may want to think about how you perform the task yourself. And perhaps to focus on the calculation
for the most significant bit. You need to know the values of the two bits that you are comparing. If those
two are not equal, you are done. But if the two bits are equal, what do you do? The answer is fairly simple:
pass along the result from the less significant bits. Thus our bit slice logic for bit M needs to be able to
accept three possible answers from the bit slice logic for bit M — 1 and must be able to pass one of three
possible answers to the logic for bit M + 1. Since [log,(3)] = 2, we need two bits of input and two bits of
output in addition to our input bits from numbers A and B.

The diagram to the right shows an abstract model of our comparator bit

slice. The inputs from the next least significant bit come in from the B
right. We include arrowheads because figures are usually drawn with j L
inputs coming from the top or left and outputs going to the bottom or A 5
right. Outside of the bit slice logic, we index these comparison bits using c'=—— zZ: comparatorS:
the bit number. The bit slice has C{"~' and C3'~' provided as inputs bit

and produces O and C}! as outputs. Internally, we use C; and Cp to ~ G~ 20 sliceM co = ci”
denote these inputs, and Z; and Zj to denote the outputs. Similarly, the

bits Ap; and By from the numbers A and B are represented internally simply as A and B. The overloading
of meaning should not confuse you, since the context (designing the logic block or thinking about the problem
as a whole) should always be clear.

M1
- Ci
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A Representation and the First Bit

We need to select a representation for our three possible answers before we can
design any logic. The representation chosen affects the implementation, as we

discuss later in these notes. For now, we simply choose the representation to the C1 Gy | meaning
right, which seems reasonable. 0 0| A=B
0 1 |A<B
Now we can design the logic for the first bit (bit 0). In keeping with the bit slice 1 0l A>B
philosophy, in practice we simply use another copy of the full bit slice design for 1 1 | not used
bit 0 and attach the C1Cy inputs to ground (to denote A = B). Here we tackle
the simpler problem as a warm-up exercise.
The truth table for bit 0 appears to the right (recall that we use Z; and Zy for
the output names). Note that the bit 0 function has only two meaningful inputs— A B | 7.z
there is no bit to the right of bit 0. If the two inputs A and B are the same, we ! 0
. . . . . 0o 0|0 0
output equality. Otherwise, we do a 1-bit comparison and use our representation 0 1 0 1
mapping to select the outputs. These functions are fairly straightforward to derive 1 ol 0
by inspection. They are: .
Z, = AB 1 110 0
Zy = AB

These forms should also be intuitive, given the representation that we chose: A > B if and only if A =1
and B=0; A< Bifand only if A=0and B = 1.

Implementation diagrams for our

one-bit functions appear to the right. A } 21 A >0 ) Yo— z:
The diagram to the immediate right 'l: O
shows the implementation as we might D 0
initially draw it, and the diagram on g ) zo B HJD% 2o

the far right shows the implementation
converted to NAND/NOR gates for a more accurate estimate of complexity when implemented in CMOS.
The exercise of designing the logic for bit 0 is also useful in the sense that the logic structure illustrated
forms the core of the full design in that it identifies the two cases that matter: A < B and A > B.

Now we are ready to design the full function. Let’s start by writing a full truth table, as shown on the left
below.

A B Cl CO Zl ZQ A B Cl CO Zl ZQ A B Cl CO Zl ZQ
0 O 0 0 0 0 0 O 0 0 0 0 0 O 0 0 0 0
0 O 0 1 0 1 0 O 0 1 0 1 0 0 0 1 0 1
0 O 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0
0 O 1 1 X X 0 1 0 0 0 1 0 1 0 0 0 1
0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1
0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0
0 1 1 1 X X 1 0 0 1 1 0 1 0 0 1 1 0
1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0
1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1
1 0 1 1 X X 1 1 1 0 1 0 1 1 1 0 1 0
1 1 0 0 0 0 X X 1 1 X X other X X
1 1 0 1 0 1

1 1 1 0 1 0

1 1 1 1 X X

In the truth table, we marked the outputs as “don’t care” (x’s) whenever C1Cy = 11. You might recall that
we ran into problems with our ice cream dispenser control in Notes Set 2.2. However, in that case we could
not safely assume that a user did not push multiple buttons. Here, our bit slice logic only accepts inputs
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from other copies of itself (or a fixed value for bit 0), and—assuming that we design the logic correctly—our
bit slice never generates the 11 combination. In other words, that input combination is impossible (rather
than undesirable or unlikely), so the result produced on the outputs is irrelevant.

It is tempting to shorten the full truth table by replacing groups of rows. For example, if AB = 01, we
know that A < B, so the less significant bits (for which the result is represented by the C1Cy inputs) don’t
matter. We could write one row with input pattern ABC1Cy = 01xx and output pattern Z; 7y = 01. We
might also collapse our “don’t care” output patterns: whenever the input matches ABC;Cy =xx11, we don’t
care about the output, so Z; 7y =xx. But these two rows overlap in the input space! In other words, some
input patterns, such as ABC1Cy = 0111, match both of our suggested new rows. Which output should take
precedence? The answer is that a reader should not have to guess. Do not use overlapping rows to shorten
a truth table. In fact, the first of the suggested new rows is not valid: we don’t need to produce output 01 if
we see C1Cy = 11. Two valid short forms of this truth table appear to the right of the full table. If you have
an “other” entry, as shown in the rightmost table, this entry should always appear as the last row. Normal
rows, including rows representing multiple input patterns, are not required to be in any particular order.
Use whatever order makes the table easiest to read for its purpose (usually by treating the input pattern as
a binary number and ordering rows in increasing numeric order).

In order to translate our design into algebra, we transcribe the
truth table into a K-map for each output variable, as shown to the = CLo Zo CLCo
right. You may want to perform this exercise yourself and check o % * - )1(1 - ==
that you obtain the same solution. Implicants for each output

are marked in the K-maps, giving the following equations: AB

01

11
7y = A§+A01+§Cl 10|
Zy = AB+ACy+BC(C
An implementation based on our equations appears to o _
the right. The figure makes it easy to see the symmetry a comparator bit slice (first attempt)

between the inputs, which arises from the representation A . .
that we’ve chosen. Since the design only uses two-level T
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logic (not counting the inverters on the A and B inputs,
since inverters can be viewed as 1-input NAND or NOR C1 ¢
gates), converting to NAND/NOR simply requires replac-
ing all of the AND and OR gates with NAND gates.

Z1

Let’s discuss the design’s efficiency roughly in terms of *%H
area and speed. As an estimate of area, we can count

gates, remembering that we need two transistors per input 4>O
on a gate. Our initial design uses two inverters, six 2-input
gates, and two 3-input gates. -

Zo

For speed, we make rough estimates in terms of the CD L
amount of time it takes for a CMOS gate to change its

output once its input has changed. This amount of time B
is called a gate delay. We can thus estimate our design’s
speed by simply counting the maximum number of gates on any path from input to output. For this mea-
surement, using a NAND/NOR representation of the design is important to getting the right answer, but, as
we have discussed, the diagram above is equivalent on a gate-for-gate basis. Here we have three gate delays
from the A and B inputs to the outputs (through the inverters). But when we connect multiple copies of
our bit slice logic together to form a comparator, as shown on the next page, the delay from the A and B
inputs to the outputs is not as important as the delay from the C; and Cj inputs to the outputs. The latter
delay adds to the total delay of our comparator on a per-bit-slice basis. Looking again at the diagram, notice
that we have only two gate delays from the C; and Cj inputs to the outputs. The total delay for an N-bit
comparator based on this implementation is thus three gate delays for bit 0 and two more gate delays per
additional bit, for a total of 2IV + 1 gate delays.
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an N-bit unsigned comparator composed of bit slices

An-1 Bn-1 An-2 Bn-2 Ax B:1 Ao Bo

o A B o A B ol A B 0 A B
21 comparator©* 21 comparator ©* Z1 comparator©* 21 comparator©* [~ 0
bit bit ) bit . bit
Co . Co . Co . Co .
~——— 7z, sliceN-1 co Zo slice N-2 ¢, ~——— 7, slicel co Zo slice0 cof=——0

Optimizing Our Design

We have a fairly good design at this point—good enough for a homework or exam problem in this class,
certainly—but let’s consider how we might further optimize it. Today, optimization of logic at this level
is done mostly by computer-aided design (CAD) tools, but we want you to be aware of the sources of
optimization potential and the tradeoffs involved. And, if the topic interests you, someone has to continue
to improve CAD software!

The first step is to manipulate our algebra to expose common terms that occur due to the design’s symmetry.
Starting with our original equation for Z;, we have

Zi = AB+AC,+BC
AB+ (A+B) ¢4
= AB+ABC,
Similarly, Zyo, = AB+ABC,

Notice that the second term in each equation now includes the complement of first term from the other
equation. For example, the Z; equation includes the complement of the AB product that we need to
compute Zy. We may be able to improve our design by combining these computations.

An implementation based on our

new algebraic formulation appears a comparator bit slice (optimized)
to the right. In this form, we
seem to have kept the same num- C1
ber of gates, although we have re- 4>07
placed the 3-input gates with in- 'l: .
verters. However, the middle in-
verters disappear when we convert 4>07
to NAND/NOR form, as shown be- B
low to the right. Our new de- 4>07
sign requires only two inverters and Co
six 2-input gates, a substantial re-
duction relative to the original im-
plementation.

Z1

JU

i

Zo

a comparator bit slice (optimized, NAND/NOR)
Is there a disadvantage? Yes, but

only a slight one. Notice that the C1
path from the A and B inputs to
the outputs is now four gates (maxi- )
mum) instead of three. Yet the path

from C; and Cjy to the outputs is DO
still only two gates. Thus, overall, B
we have merely increased our N-bit
comparator’s delay from 2N +1 gate Co
delays to 2N + 2 gate delays.

Z1

)
Y |

Zo

v
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Extending to 2’s Complement

What about comparing 2’s complement numbers? Can we make use of the unsigned comparator that we
just designed?

Let’s start by thinking about the sign of the numbers A and B. Recall that 2’s complement records a
number’s sign in the most significant bit. For example, in the 8-bit numbers shown in the first diagram in
this set of notes, the sign bits are A7 and B;. Let’s denote these sign bits in the general case by A and B;.
Negative numbers have a sign bit equal to 1, and non-negative numbers have a sign bit equal to 0. The table
below outlines an initial evaluation of the four possible combinations of sign bits.

A, By | interpretation | solution

0 0 | A>0AND B >0 | use unsigned comparator on remaining bits
0 1 |A>0AND B<0| A>B

1 0 | A<OANDB>0| A<B

1 1 | A<0AND B <0 | unknown

What should we do when both numbers are negative? Need we
design a completely separate logic circuit? Can we somehow
convert a negative value to a positive one? AsA2A1Ao B3B2B1Bo
The answer is in fact much simpler. Recall that A1100 (9 B1110(2
2’s complement is defined based on modular arithmetic.

Given an N-bit negative number A, the representation for 4=-4+8 6=-2+
the bits A[N — 2 : 0] is the same as the binary (unsigned)

representation of A+2V~!. An example appears to the right.

Let’s define A, = A+ 2V~! as the value of the remaining bits for A and B, similarly for B. What happens
if we just go ahead and compare A, and B, using an (N — 1)-bit unsigned comparator? If we find that
A, < B, we know that A, — 2¥~1 < B, — 2V~ a5 well, but that means A < B! We can do the same with
either of the other possible results. In other words, simply comparing A, with B, gives the correct answer
for two negative numbers as well.

All we need to design is a logic block for the sign bits.
At this point, we might write out a K-map, but instead
let’s rewrite our high-level table with the new informa-
tion, as shown to the right.

Ay By | solution

pass result from less significant bits
A>B

A< B

pass result from less significant bits

0 0

0 1

1 0
Looking at the table, notice the similarity to the high- 1 1
level design for a single bit of an unsigned value. The
only difference is that the two A # B cases are reversed. If we swap A and By, the function is identical.
We can simply use another bit slice but swap these two inputs. Implementation of an N-bit 2’s complement
comparator based on our bit slice comparator is shown below. The blue circle highlights the only change
from the N-bit unsigned comparator, which is to swap the two inputs on the sign bit.

an N-bit 2's complement comparator composed of hit slices

An-1 Bn-? An-2 Bn-2 A B1 Ao Bo
ci™ W ci? A B ci A B cl A B 0
21 comparator©* 21 comparator©? 21 comparator©* 21 comparator©*
bit bit ) bit , bit
Co . Co . Co . Co .
-——— 7z, sliceN-1 co Zo slice N-2 co ~——— 7, slicel co Zo slice0 co~——0




26 (©2012 Steven S. Lumetta. All rights reserved.

Further Optimization

Let’s return to the topic of optimization. To what extent did the
representation of the three outcomes affect our ability to develop a
good bit slice design? Although selecting a good representation can
be quite important, for this particular problem most representations
lead to similar implementations.

Co | original | alternate
A=B A=B
1 | A<B A>B
0 | A>B not used
1 | notused | A< B

HHOOQ
(@)

Some representations, however, have interesting properties. Consider

the alternate representation on the right, for example (a copy of the original representation is included for
comparison). Notice that in the alternate representation, Cy = 1 whenever A # B. Once we have found
the numbers to be different in some bit, the end result can never be equality, so perhaps with the right
representation—the new one, for example—we might be able to cut delay in half?

An implementation based on the
alternate representation appears in a comparator bit slice (alternate representation)
the diagram to the right. As you can

see, in terms of gate count, this de- G )OT

sign replaces one 2-input gate with A } }
[>O z

an inverter and a second 2-input '

gate with a 3-input gate. The path D 0

lengths are the same, requiring 2N+ B j—«

2 gate delays for an N-bit compara- } -

tor. Overall, it is about the same as Co >o

our original design.

Why didn’t it work? Should we consider still other representations? In fact, none of the possible represen-
tations that we might choose for a bit slice can cut the delay down to one gate delay per bit. The problem
is fundamental, and is related to the nature of CMOS. For a single bit slice, we define the incoming and
outgoing representations to be the same. We also need to have at least one gate in the path to combine
the C7 and Cj inputs with information from the bit slice’s A and B inputs. But all CMOS gates invert the
sense of their inputs. Our choices are limited to NAND and NOR. Thus we need at least two gates in the
path to maintain the same representation.

One simple answer is to use different representations for odd and even bits. Instead, we optimize a logic
circuit for comparing two bits. We base our design on the alternate representation. The implementation is
shown below. The left shows an implementation based on the algebra, and the right shows a NAND/NOR
implementation. Estimating by gate count and number of inputs, the two-bit design doesn’t save much over
two single bit slices in terms of area. In terms of delay, however, we have only two gate delays from C4
and Cj to either output. The longest path from the A and B inputs to the outputs is five gate delays. Thus,
for an N-bit comparator built with this design, the total delay is only N + 3 gate delays. But N has to be
even.

a comparator 2-bit slice (alternate representation) a comparator 2-bit slice (alternate representation, NAND/NOR)

C1

P -
Y e L) e >

Bo i' ) Bo
]
] } z
Zo ]
]
. } c >o

As you can imagine, continuing to scale up the size of our logic block gives us better performance at
the expense of a more complex design. Using the alternate representation may help you to see how one
can generalize the approach to larger groups of bits—for example, you may have noticed the two bitwise
comparator blocks on the left of the implementations above.

B1
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Example: Using Abstraction to Simplify Problems

In this set of notes, we illustrate the use of abstraction to simplify problems. In particular, we show how two
specific examples—integer subtraction and identification of upper-case letters in ASCII—can be implemented
using logic functions that we have already developed. We also introduce a conceptual technique for breaking
functions into smaller pieces, which allows us to solve several simpler problems and then to compose a full
solution from these partial solutions.

Together with the idea of bit-sliced designs that we introduced earlier, these techniques help to simplify
the process of designing logic that operates correctly. The techniques can, of course, lead to less efficient
designs, but correctness is always more important than performance. The potential loss of efficiency is often
acceptable for three reasons. First, as we mentioned earlier, computer-aided design tools for optimizing logic
functions are fairly effective, and in many cases produce better results than human engineers (except in the
rare cases in which the human effort required to beat the tools is worthwhile). Second, as you know from the
design of the 2’s complement representation, we may be able to reuse specific pieces of hardware if we think
carefully about how we define our problems and representations. Finally, many tasks today are executed in
software, which is designed to leverage the fairly general logic available via an instruction set architecture.
A programmer cannot easily add new logic to a user’s processor. As a result, the hardware used to execute
a function typically is not optimized for that function. The approaches shown in this set of notes illustrate
how abstraction can be used to design logic.

Subtraction

Our discussion of arithmetic implementation has focused so far on addition. What about other operations,
such as subtraction, multiplication, and division? The latter two require more work, and we will not discuss
them in detail until later in our class (if at all).

Subtraction, however, can be performed almost trivially using logic that we have already designed. Let’s
say that we want to calculate the difference D between two N-bit numbers A and B. In particular, we
want to find D = A — B. For now, think of A, B, and D as 2’s complement values. Recall how we defined
the 2’s complement representation: the N-bit pattern that we use to represent — B is the same as the base 2
bit pattern for (2V — B), so we can use an adder if we first calculate the bit pattern for —B, then add the
resulting pattern to A. As you know, our N-bit adder always produces a result that is correct modulo 2%,
so the result of such an operation, D = 2V + A — B, is correct so long as the subtraction does not overflow.

How can we calculate 2V — B? The same way that we do by hand! Calculate
the 1’s complement, (2 — 1) — B, then add 1. The diagram to the right A

shows how we can use the N-bit adder that we designed in Notes Set 2.3 to N
build an N-bit subtracter. New elements appear in blue in the figure—the

rest of the logic is just an adder. The box labeled “1’s comp.” calculates

the 1’s complement of the value B, which together with the carry in value of 1

correspond to calculating —B. What’s in the “1’s comp.” box? One inverter A

per bit in B. That’s all we need to calculate the 1’s complement. You might N

now ask: does this approach also work for unsigned numbers? The answer is

What does the
yes, absolutely. However, the overflow conditions for both 2’s complement and carry out mean?
unsigned subtraction are different than the overflow condition for either type
of addition. What does the carry out of our adder signify, for example? The D=A-B

answer may not be immediately obvious.

Let’s start with the overflow condition for unsigned subtraction. Overflow means that we cannot represent
the result. With an N-bit unsigned number, we have A — B ¢ [0,2 — 1]. Obviously, the difference cannot
be larger than the upper limit, since A is representable and we are subtracting a non-negative (unsigned)
value. We can thus assume that overflow occurs only when A — B < 0. In other words, when A < B.
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To calculate the unsigned subtraction overflow condition in terms of the bits, recall that our adder is cal-
culating 2V + A — B. The carry out represents the 2 term. When A > B, the result of the adder is at
least 2V, and we see a carry out, C,y; = 1. However, when A < B, the result of the adder is less than 2%,
and we see no carry out, Coy = 0. Owverflow for unsigned subtraction is thus inverted from overflow for
unsigned addition: a carry out of 0 indicates an overflow for subtraction.

What about overflow for 2’s complement subtraction? We can use arguments similar to those that we used
to reason about overflow of 2’s complement addition to prove that subtraction of one negative number from
a second negative number can never overflow. Nor can subtraction of a non-negative number from a second
non-negative number overflow.

If A > 0and B < 0, the subtraction overflows iff A — B > 2N¥~1. Again using similar arguments as
before, we can prove that the difference D appears to be negative in the case of overflow, so the product
An_1 Bn_1 Dn_1 evaluates to 1 when this type of overflow occurs (these variables represent the most
significant bits of the two operands and the difference; in the case of 2’s complement, they are also the sign
bits). Similarly, if A < 0 and B > 0, we have overflow when A — B < —2¥~1. Here we can prove that D > 0
on overflow, so Axy_1 By_1 Dn_1 evaluates to 1.

Our overflow condition for N-bit 2’s complement subtraction is thus given by the following;:
An_1 By-1 Dy_1+An_1 Bno1 DNy

If we calculate all four overflow conditions—unsigned and 2’s complement, addition and subtraction—and
provide some way to choose whether or not to complement B and to control the Cj, input, we can use the
same hardware for addition and subtraction of either type.

Checking ASCII for Uppercase Letters

Let’s now consider how we can check whether or not an ASCII character is an upper-case letter. Let’s call
the 7-bit letter C' = CsC5C,C5C2C1Cy and the function that we want to calculate L(C). The function L
should equal 1 whenever C represents an upper-case letter, and 0 whenever C' does not.

In ASCII, the 7-bit patterns from 0x41 through 0x5A correspond to the letters A through Z in order. Perhaps
you want to draw a 7-input K-map? Get a few large sheets of paper! Instead, imagine that we’ve written the
full 128-row truth table. Let’s break the truth table into pieces. Each piece will correspond to one specific
pattern of the three high bits CsC5Cy, and each piece will have 16 entries for the four low bits C3CyC1Cy.
The truth tables for high bits 000, 001, 010, 011, 110, and 111 are easy: the function is exactly 0. The other
two truth tables appear on the left below. We’ve called the two functions T, and T5, where the subscripts
correspond to the binary value of the three high bits of C.

Cs Cy C1 Cy|Ty T3 T cc
4
O O 0 0 O 1 00 013 2Zl.l 10
o o0 0o 1|1 1 o 01|11
0 0 1 0 1 1
o111 | 1|11
L R SN e PP Ty = Cy+Co+Ci+Cy
0 1 0 1 1 1 10| 1 1 1 1
0 1 1 0 1 1
0 1 1 1 1 1
1 0 0 0 1 1
1 0 0 1 1 1 Ts GG,
1 O 1 O 1 1 00 01 11 10
1 0 1 1 1 0 oo 11|01
1 1 0 0|1 0 e o) I = GG+ Ci+C G
1 1 0 1 1 0 1/ 1|1/0]0
1 1 1 0 1 0 001101
1 1 1 1 1 0
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As shown to the right of the truth tables, we can then draw simpler K-maps for T and T5, and can solve
the K-maps to find equations for each, as shown to the right (check that you get the same answers).

How do we merge these results to form our final expression for L? We AND each of the term functions (74
and T5) with the appropriate minterm for the high bits of C, then OR the results together, as shown here:

L = C5C5CyTy+CsCs5 Cy T
= CsC5 Cy (C34Cy4C1+ Co) + Cs Cs5 Cy (C3+ C2 Cr + C Co)

Rather than trying to optimize by hand, we can at this point let the CAD tools take over, confident that we
have the right function to identify an upper-case ASCII letter.

Breaking the truth table into pieces and using simple logic to reconnect the pieces is one way to make use of
abstraction when solving complex logic problems. In fact, recruiters for some companies often ask questions
that involve using specific logic elements as building blocks to implement other functions. Knowing that you
can implement a truth table one piece at a time will help you to solve this type of problem.

Let’s think about other ways to tackle the problem of calculating L. In Notes Sets 2.3 and 2.4, we developed
adders and comparators. Can we make use of these as building blocks to check whether C' represents an
upper-case letter? Yes, of course we can: by comparing C with the ends of the range of upper-case letters,
we can check whether or not C falls in that range.

The idea is illustrated on the left below using two 7-bit comparators constructed as discussed in Notes Set 2.4.
The comparators are the black parts of the drawing, while the blue parts represent our extensions to calcu-
late L. Each comparator is given the value C as one input. The second value to the comparators is either
the letter A (0x41) or the letter Z (0x5A). The meaning of the 2-bit input and result to each comparator is
given in the table on the right below. The inputs on the right of each comparator are set to 0 to ensure that
equality is produced if C' matches the second input (B). One output from each comparator is then routed
to a NOR gate to calculate L. Let’s consider how this combination works. The left comparator compares C'
with the letter A (0x41). If C' > 0x41, the comparator produces Zy = 0. In this case, we may have a letter.
On the other hand, if C' < 0x41, the comparator produces Zy = 1, and the NOR gate outputs L = 0, since we
do not have a letter in this case. The right comparator compares C with the letter Z (0x5A). If C' < 0x5A,
the comparator produces Z; = 0. In this case, we may have a letter. On the other hand, if C' > 0x5A, the
comparator produces Z; = 1, and the NOR gate outputs L = 0, since we do not have a letter in this case.
Only when 0x41 < C < 0x51 does L = 1, as desired.

C 0x41 Ox5A
7 7 7 /i/7
discard A B 0 A B 0 Z1  Zy | meaning
Iscard=-——— 7 i C z i Ci |[+—
l con71pt;|rtator l 1 co;pk::ator 1 0 0 A=B
Zo Co=—0 . = 2 Co[=——0 0 1 A<B
discard 1 0 A>B
1 1 | not used
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What if we have only 8-bit adders available for our use,

such as those developed in Notes Set 2.37 Can we still cal- c OXBE OxA4
culate L? Yes. The diagram shown to the right illustrates 7

the approach, again with black for the adders and blue @

for our extensions. Here we are actually using the adders

as subtracters, but calculating the 1’s complements of the ¢ ¢

constant values by hand. The “zero extend” box simply A B

adds a leading 0 to our 7-bit ASCII letter. The left adder 8-bit adder

subtracts the letter A from C: if no carry is produced, we Cau o Cunfe—1

know that C' < 0x41 and thus C' does not represent an
upper-case letter, and L = 0. Similarly, the right adder

8

subtracts 0x5B (the letter Z plus one) from C. If a carry discard discard

is produced, we know that C' > 0x5B, and thus C' does

not represent an upper-case letter, and L = 0. With the m L
right combination of carries (1 from the left and 0 from the

right), we obtain L = 1.

Looking carefully at this solution, however, you might be struck by the fact that we are calculating two sums
and then discarding them. Surely such an approach is inefficient?

We offer two answers. First, given the design shown above, a good CAD tool recognizes that the sum outputs
of the adders are not being used, and does not generate logic to calculate them. The logic for the two carry
bits used to calculate L can then be optimized. Second, the design shown, including the calculation of the
sums, is similar in efficiency to what happens at the rate of about 10'® times per second, 24 hours a day, seven
days a week, inside processors in data centers processing HTML, XML, and other types of human-readable
Internet traffic. Abstraction is a powerful tool.

Later in our class, you will learn how to control logical connections between hardware blocks so that you
can make use of the same hardware for adding, subtracting, checking for upper-case letters, and so forth.
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ECE199JL: Introduction to Computer Engineering Fall 2012
Notes Set 2.6

Sequential Logic

These notes introduce logic components for storing bits, building up from the idea of a pair of cross-coupled
inverters through an implementation of a flip-flop, the storage abstractions used in most modern logic design
processes. We then introduce simple forms of timing diagrams, which we use to illustrate the behavior of a
logic circuit. After commenting on the benefits of using a clocked synchronous abstraction when designing
systems that store and manipulate bits, we illustrate timing issues and explain how these are abstracted
away in clocked synchronous designs. Sections marked with an asterisk are provided solely for your interest,
but you probably need to learn this material in later classes.

Storing One Bit

So far we have discussed only implementation of Boolean functions: given some bits as input, how can we
design a logic circuit to calculate the result of applying some function to those bits? The answer to such
questions is called combinational logic (sometimes combinatorial logic), a name stemming from the
fact that we are combining existing bits with logic, not storing new bits.

You probably already know, however, that combinational logic alone is not sufficient to build a computer.
We need the ability to store bits, and to change those bits. Logic designs that make use of stored bits—bits
that can be changed, not just wires to high voltage and ground—are called sequential logic. The name
comes from the idea that such a system moves through a sequence of stored bit patterns (the current stored
bit pattern is called the state of the system).

Consider the diagram to the right. What is it? A 1-input NAND gate, or

an inverter drawn badly? If you think carefully about how these two gates

are built, you will realize that they are the same thing. Conceptually, we 7337
use two inverters to store a bit, but in most cases we make use of NAND
gates to simplify the mechanism for changing the stored bit.

Take a look at the design to the right. Here we have taken

two inverters (drawn as NAND gates) and coupled each Q
gate’s output to the other’s input. What does the circuit
do? Let’s make some guesses and see where they take us.
Imagine that the value at @ is 0. In that case, the lower
gate drives P to 1. But P drives the upper gate, which
forces @ to 0. In other words, this combination forms a
stable state of the system: once the gates reach this state, they continue to hold these values. The first row
of the truth table to the right (outputs only) shows this state.

— ol
o~

What if @ = 1, though? In this case, the lower gate forces P to 0, and the upper gate in turn forces @ to 1.
Another stable state! The Q = 1 state appears as the second row of the truth table.

We have identified all of the stable states.! Notice that our cross-coupled inverters can store a bit. Unfortu-
nately, we have no way to specify which value should be stored, nor to change the bit’s value once the gates
have settled into a stable state. What can we do?

IMost logic families also allow unstable states in which the values alternate rapidly between 0 and 1. These metastable
states are beyond the scope of our class, but ensuring that they do not occur in practice is important for real designs.
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Let’s add an input to the upper gate, as shown mzﬂmhfsrnm?
to the right. We call the input S. The “S” _ isactivelow
stands for set—as you will see, our new input ST Q

allows us to set our stored bit @ to 1. The use
of a complemented name for the input indicates
that the input is active low. In other words,
the input performs its intended task (setting @
to 1) when its value is 0 (not 1).

[l 9]
= = ol
o o RNy

Think about what happens when the new input is not active, S = 1. As you know, ANDing any value with 1
produces the same value, so our new input has no effect when S = 1. The first two rows of the truth table
are simply a copy of our previous table: the circuit can store either bit value when S = 1. What happens
when S = 07 In that case, the upper gate’s output is forced to 1, and thus the lower gate’s is forced to 0.
This third possibility is reflected in the last row of the truth table.

Now we have the ability to force bit @ to
have value 1, but if we want Q@ = 0, we

. o 'R-S latch (st ingle bit
just have to hope that the circuit happens an atch (stores a single bit)

to settle into that state when we turn on S o R S$|1Q P
the power. What can we do? 1 110 1

1 171 0
As you probably guessed, we add an input 1 0l1 o
to the other gate, as shown to the right. B b o 110 1
We call the new input R: the input’s pur- R——] o ol1 1

. . . the complement markings
pose is to reset bit ) to 0, and the input indicate that the mputs

is active low. We extend the truth table areactive low
to include a row with R = 0 and S = 1,
which forces Q@ =0 and P = 1.

The circuit that we have drawn has a name: an R-S latch. One can also build R-S latches (with active
high set and reset inputs). The textbook also shows an R-S latch (labeled incorrectly). Can you figure out
how to build an R-S latch yourself?

Let’s think a little more about the R-S latch. What happens if we set S = 0 and R = 0 at the same time?
Nothing bad happens immediately. Looking at the design, both gates produce 1, so @ =1 and P = 1. The
bad part happens later: if we raise both S and R back to 1 at around the same time, the stored bit may end
up in either state.?

We can avoid the problem by adding gates to prevent the two control inputs (S and R) from ever being 1
at the same time. A single inverter might technically suffice, but let’s build up the structure shown below,
noting that the two inverters in sequence connecting D to R have no practical effect at the moment. A
truth table is shown to the right of the logic diagram. When D = 0, R is forced to 0, and the bit is reset.
Similarly, when D = 1, S is forced to 0, and the bit is set.

i > : Q

Unfortunately, except for some interesting timing characteristics, the new design has the same functionality
as a piece of wire. And, if you ask a circuit designer, thin wires also have some interesting timing character-
istics. What can we do? Rather than having @ always reflect the current value of D, let’s add some extra
inputs to the new NAND gates that allow us to control when the value of D is copied to @, as shown on the
next page.

D |
0
1

=]
S = Wy
=l
SR

20r, worse, in a metastable state, as mentioned earlier.
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a gated D latch (stores a single bit) WE D|R § Q P
D S 1 0|0 1 0 1
Q 1 1/1 0 1 0
0 o011 1 0 1
0 171 1 0 1
o 0 of1 1 1 o0
e :)o? 0 1|1 1 1 0
The WE (write enable) input controls whether or not @ mirrors the value of D.
The first two rows in the truth table are replicated from our “wire” design: a value gated D latch symbc
of WE = 1 has no effect on the first two NAND gates, and Q = D. A value of WE = 0 1o ok
forces the first two NAND gates to output 1, thus R = 1, S = 1, and the bit @ can B
Jdwe gk

occupy either of the two possible states, regardless of the value of D, as reflected in " .
. and Q were always opposites,
the lower four lines of the truth table. o we now [Ust w6 O

(often omitted entirely in drawings)
The circuit just shown is called a gated D latch, and is an important mechanism
for storing state in sequential logic. (Random-access memory uses a slightly different technique to connect
the cross-coupled inverters, but latches are used for nearly every other application of stored state.) The “D”
stands for “data,” meaning that the bit stored is matches the value of the input. Other types of latches
(including S-R latches) have been used historically, but D latches are used predominantly today, so we omit
discussion of other types. The “gated” qualifier refers to the presence of an enable input (we called it WE)
to control when the latch copies its input into the stored bit. A symbol for a gated D latch appears to the
right. Note that we have dropped the name P in favor of @, since P = @ in a gated D latch.

The Clock Abstraction

High-speed logic designs often use latches directly. Engineers specify the number of latches as well as
combinational logic functions needed to connect one latch to the next, and the CAD tools optimize the
combinational logic. The enable inputs of successive groups of latches are then driven by what we call a
clock signal, a single bit line distributed across most of the chip that alternates between 0 and 1 with a
regular period. While the clock is 0, one set of latches holds its bit values fixed, and combinational logic uses
those latches as inputs to produce bits that are copied into a second set of latches. When the clock switches
to 1, the second set of latches stops storing their data inputs and retains their bit values in order to drive
other combinational logic, the results of which are copied into a third set of latches. Of course, some of the
latches in the first and third sets may be the same.

The timing of signals in such designs plays a critical role in their correct operation. Fortunately, we have
developed powerful abstractions that allow engineers to ignore much of the complexity while thinking about
the Boolean logic needed for a given design.

Towards that end, we make a simplifying assumption for the rest of our class, and for most of your career
as an undergraduate: the clock signal is a square wave delivered uniformly across a chip. For example, if
the period of a clock is 0.5 nanoseconds (2 GHz), the clock signal is a 1 for 0.25 nanoseconds, then a 0 for
0.25 nanoseconds. We assume that the clock signal changes instantaneously and at the same time across
the chip. Such a signal can never exist in the real world: voltages do not change instantaneously, and the
phrase “at the same time” may not even make sense at these scales. However, circuit designers can usually
provide a clock signal that is close enough, allowing us to forget for now that no physical signal can meet
our abstract definition.
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The device shown to the right is a
master-slave implementation of a
positive edge-triggered D flip-flop.

a positive edge-triggered D flip—flop

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

| X | 0
As you can see, we have constructed it D— b Q b QR D flip=flop symbol
ﬁ'*om two gated D latches with oppo- WE © WE © )
site senses of write enable. The “D” ! | N

part of the name has the same mean-
ing as with a gated D latch: the bit (master-slave implementation)

stored is the same as the one delivered

to the input. Other variants of flip-flops have also been built, but this type dominates designs today. Most
are actually generated automatically from hardware “design” languages (that is, computer programming
languages for hardware design).

When the clock is low (0), the first latch copies its value from the flip-flop’s D input to the midpoint
(marked X in our figure, but not usually given a name). When the clock is high (1), the second latch copies
its value from X to the flip-flop’s output Q). Since X can not change when the clock is high, the result is that
the output changes each time the clock changes from 0 to 1, which is called the rising edge or positive
edge (the derivative) of the clock signal. Hence the qualifier “positive edge-triggered,” which describes the
flip-flop’s behavior. The “master-slave” implementation refers to the use of two latches. In practice, flip-flops
are almost never built this way. To see a commercial design, look up 74LS74, which uses six 3-input NAND
gates and allows set/reset of the flip-flop (using two extra inputs).

The timing diagram to the right illustrates the operation D cobi .
. L. © . . copied to X when CLK is low

of our flip-flop. In a timing diagram, the horizontal axis (with a master—slave implementation)
represents (continuous) increasing time, and the individual
lines represent voltages for logic signals. The relatively
simple version shown here uses only binary values for each ¢k —— [ —
signal. One can also draw transitions more realistically QI —— 1
(as taking finite time). The dashed vertical lines here
represent the times at which the clock rises. To make the
example interesting, we have varied D over two clock cycles. Notice that even though D rises and falls during
the second clock cycle, its value is not copied to the output of our flip-flop. One can build flip-flops that
“catch” this kind of behavior (and change to output 1), but we leave such designs for later in your career.

-— notice that D may chan(
before rising edge

X copied to Q when CLK is high

Circuits such as latches and flip-flops are called sequential feedback circuits, and the process by which
they are designed is beyond the scope of our course. The “feedback” part of the name refers to the fact
that the outputs of some gates are fed back into the inputs of others. Each cycle in a sequential feedback
circuit can store one bit. Circuits that merely use latches and flip-flops as building blocks are called clocked
synchronous sequential circuits. Such designs are still sequential: their behavior depends on the bits
currently stored in the latches and flip-flops. However, their behavior is substantially simplified by the use
of a clock signal (the “clocked” part of the name) in a way that all elements change at the same time
(“synchronously”).

The value of using flip-flops and assuming a square-wave clock signal with uniform timing may not be clear
to you yet, but it bears emphasis. With such assumptions, we can treat time as having discrete values. In
other words, time “ticks” along discretely, like integers instead of real numbers. We can look at the state of
the system, calculate the inputs to our flip-flops through the combinational logic that drives their D inputs,
and be confident that, when time moves to the next discrete value, we will know the new bit values stored
in our flip-flops, allowing us to repeat the process for the next clock cycle without worrying about exactly
when things change. Values change only on the rising edge of the clock!

Real systems, of course, are not so simple, and we do not have one clock to drive the universe, so engineers
must also design systems that interact even though each has its own private clock signal (usually with dif-
ferent periods).
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Static Hazards: Causes and Cures*

Before we forget about the fact that real designs do not provide perfect clocks, let’s explore some of the
issues that engineers must sometimes face. We discuss these primarily to ensure that you appreciate the
power of the abstraction that we use in the rest of our course. In later classes (probably our 298, which will
absorb material from 385), you may be required to master this material. For now, we provide it simply for
your interest.

Consider the circuit shown below, for which the output is given by the equation S = AB + BC.

A A ]
B

B S cC
E>07 S_ | L
. h/ =
C— Do B goes high 1 B goes lo

aglitchin S

The timing diagram on the right shows a glitch in the output when the input shifts from ABC = 110 to 100,
that is, when B falls. The problem lies in the possibility that the upper AND gate, driven by B, might go
low before the lower AND gate, driven by B, goes high. In such a case, the OR gate output S falls until the
second AND gate rises, and the output exhibits a glitch.

A circuit that might exhibit a glitch in an output that functionally remains stable at 1 is said to have a
static-1 hazard. The qualifier “static” here refers to the fact that we expect the output to remain static,
while the “1” refers to the expected value of the output.

The presence of hazards in circuits can be problematic in certain cases. In domino logic, for example, an
output is precharged and kept at 1 until the output of a driving circuit pulls it to 0, at which point it stays
low (like a domino that has been knocked over). If the driving circuit contains static-1 hazards, the output
may fall in response to a glitch.

Similarly, hazards can lead to unreliable behavior in sequential feedback circuits. Consider the addition of
a feedback loop to the circuit just discussed, as shown in the figure below. The output of the circuit is now
given by the equation S* = AB + BCS, where S* denotes the state after S feeds back through the lower
AND gate. In the case discussed previously, the transition from ABC = 110 to 100, the glitch in S can
break the feedback, leaving S low or unstable. The resulting sequential feedback circuit is thus unreliable.

Al
B [

B
s Cc
S [

c— Do+ f

unknown/unstabl
Eliminating static hazards from two-level circuits is fairly straightforward. The Kar- AB
naugh map to the right corresponds to our original circuit; the solid lines indicate the 00 01 11 10
implicants selected by the AND gates. A static-1 hazard is present when two adjacent 1s c? D 01)a]
in the K-map are not covered by a common implicant. Static-0 hazards do not occur in 1jojollgfo

two-level SOP circuits.

Eliminating static hazards requires merely extending the circuit with consensus terms in order to ensure that
some AND gate remains high through every transition between input states with output 1.3 In the K-map
shown, the dashed line indicates the necessary consensus term, AC.

3Hazard elimination is not in general simple; we have considered only two-level circuits.
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Dynamic Hazards*

Consider an input transition for which we expect to see a change in an output. Under certain timing
conditions, the output may not transition smoothly, but instead bounce between its original value and its
new value before coming to rest at the new value. A circuit that might exhibit such behavior is said to
contain a dynamic hazard. The qualifier “dynamic” refers to the expected change in the output.

Dynamic hazards appear only in more complex circuits, such as the one shown below. The output of this
circuit is defined by the equation Q = AB + AC' + BC + BD.

W >

Consider the transition from the input state ABCD = 1111 to 1011, in
which B falls from 1 to 0. For simplicity, assume that each gate has a
delay of 1 time unit. If B goes low at time T = 0, the table shows the
progression over time of logic levels at several intermediate points in the
circuit and at the output (). Each gate merely produces the appropriate
output based on its inputs in the previous time step. After one delay,
the three gates with B as a direct input change their outputs (to stable,
final values). After another delay, at T = 2, the other three gates re-
spond to the initial changes and flip their outputs. The resulting changes induce another set of changes at
T = 3, which in turn causes the output @ to change a final time at T = 4.
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= = == ol
o~ o~ RO

== O e

OO O

=== = OfR

The output column in the table illustrates the possible impact of a dynamic hazard: rather than a smooth
transition from 1 to 0, the output drops to 0, rises back to 1, and finally falls to 0 again. The dynamic hazard
in this case can be attributed to the presence of a static hazard in the logic that produces intermediate value j.
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Essential Hazards*

Essential hazards are inherent to the function of a circuit and may appear in any implementation. In
sequential feedback circuit design, they must be addressed at a low level to ensure that variations in logic
path lengths (timing skew) through a circuit do not expose them. With clocked synchronous circuits,
essential hazards are abstracted into a single form: clock skew, or disparate clock edge arrival times at a
circuit’s flip-flops.

An example demonstrates the possible effects: consider the construction of a clocked synchronous circuit to
recognize 0-1 sequences on an input IN. Output @ should be held high for one cycle after recognition, that
is, until the next rising clock edge. A description of states and a state diagram for such a circuit appear below.

5150 state  meaning
00 A nothing, 1, or 11 seen last
01 B 0 seen last
10 C 01 recognized (output high)
11  unused

For three states, we need two (= [log, 3]) flip-flops. Denote the internal state S1.59. The specific internal
state values for each logical state (A, B, and C) simplify the implementation and the example. A state table
and K-maps for the next-state logic appear below. The state table uses one line per state with separate
columns for each input combination, making the table more compact than one with one line per state/input
combination. Each column contains the full next-state information, including output. Using this form of the
state table, the K-maps can be read directly from the table.

IN
515 0 1 S S Y S$ Q SS

00 01/0  00/0 00 01 11 10 00 01 1110 00 01 11 10
01 01/0 10/0 N ©10/0]x|0 N O (AL [D N ©100|x [T
11 X X 110|@x|o0 110|0|x|0 1/ofollx]d

10 01/1 00/1

Examining the K-maps, we see that the excitation and output equations are Sf‘ =1IN - Sy, S’J = 1IN, and
@ = S1. An implementation of the circuit using two D flip-flops appears below. Imagine that mistakes in
routing or process variations have made the clock signal’s path to flip-flop 1 much longer than its path into

flip-flop 0, as illustrated.
Tho s | Prsf—9

CLK F

IN

a long, slow wire

Due to the long delays, we cannot assume that rising clock edges arrive at the flip-flops at the same time.
The result is called clock skew, and can make the circuit behave improperly by exposing essential hazards.
In the logical B to C transition, for example, we begin in state S1.5¢ = 01 with /N = 1 and the clock edge
rising. Assume that the edge reaches flip-flop 0 at time 7' = 0. After a flip-flop delay (T = 1), Sy goes low.
After another AND gate delay (T = 2), input D; goes low, but the second flip-flop has yet to change state!
Finally, at some later time, the clock edge reaches flip-flop 1. However, the output S; remains at 0, leaving
the system in state A rather than state C.

Fortunately, in clocked synchronous sequential circuits, all essential hazards are related to clock skew. This
fact implies that we can eliminate a significant amount of complexity from circuit design by doing a good
job of distributing the clock signal. It also implies that, as a designer, you should avoid specious addition of
logic in a clock path, as you may regret such a decision later, as you try to debug the circuit timing.
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Proof Outline for Clocked Synchronous Design*

This section outlines a proof of the claim made regarding clock skew being the only source of essential
hazards for clocked synchronous sequential circuits. A proof outline suggests the form that a proof might
take and provides some of the logical arguments, but is not rigorous enough to be considered a proof. Here
we use a D flip-flop to illustrate a method for identifying essential hazards (the D flip-flop has no essential
hazards, however), then argue that the method can be applied generally to collections of flip-flops in a clocked
synchronous design to show that essential hazards occur only in the form of clock skew.

state state 00 01 11 1

low L  clock low, last input low L @ ®\PH

high H  clock high, last input low H L
pulse low PL clock low, last input high (output high, too)
pulse high PH clock high, last input high (output high, too) PL N

Consider the sequential feedback state table for a positive edge-triggered D flip-flop, shown above. In
designing and analyzing such circuits, we assume that only one input bit changes at a time. The state
table consists of one row for each state and one column for each input combination. Within a row, input
combinations that have no effect on the internal state of the circuit (that is, those that do not cause any
change in the state) are said to be stable; these states are circled. Other states are unstable, and the circuit
changes state in response to changes in the inputs.

For example, given an initial state L with low output, low clock, and high input D, the solid arcs trace the
reaction of the circuit to a rising clock edge. From the 01 input combination, we move along the column to
the 11 column, which indicates the new state, PH. Moving down the column to that state’s row, we see that
the new state is stable for the input combination 11, and we stop. If PH were not stable, we would continue
to move within the column until coming to rest on a stable state.

An essential hazard appears in such a table as a difference between the final state when flipping a bit once
and the final state when flipping a bit thrice in succession. The dashed arcs in the figure illustrate the
concept: after coming to rest in the PH state, we reset the input to 01 and move along the PH row to find
a new state of PL. Moving up the column, we see that the state is stable. We then flip the clock a third
time and move back along the row to 11, which indicates that PH is again the next state. Moving down
the column, we come again to rest in PH, the same state as was reached after one flip. Flipping a bit three
times rather than once evaluates the impact of timing skew in the circuit; if a different state is reached after
two more flips, timing skew could cause unreliable behavior. As you can verify from the table, a D flip-flop
has no essential hazards.

A group of flip-flops, as might appear in a clocked synchronous circuit, can and usually does have essential
hazards, but only dealing with the clock. As you know, the inputs to a clocked synchronous sequential
circuit consist of a clock signal and other inputs (either external of fed back from the flip-flops). Changing
an input other than the clock can change the internal state of a flip-flop (of the master-slave variety), but
flip-flop designs do not capture the number of input changes in a clock cycle beyond one, and changing an
input three times is the same as changing it once. Changing the clock, of course, results in a synchronous
state machine transition.

The detection of essential hazards in a clocked synchronous design based on flip-flops thus reduces to exam-
ination of the state machine. If the next state of the machine has any dependence on the current state, an
essential hazard exists, as a second rising clock edge moves the system into a second new state. For a single
D flip-flop, the next state is independent of the current state, and no essential hazards are present.
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Registers

This set of notes introduces registers, an abstraction used for storage of groups of bits in digital systems.
We introduce some terminology used to describe aspects of register design and illustrate the idea of a shift
register. The registers shown here are important abstractions for digital system design. In the Fall 2012
offering of our course, we will cover this material on the third midterm.

Registers

A register is a storage element composed from one or more

flip-flops operating on a common clock. In addition to the flip- IN D Q
flops, most registers include logic to control the bits stored by L%ﬁw

the register. For example, the D flip-flops described previously
copy their inputs at the rising edge of each clock cycle, dis-

carding whatever bits they have stored during that cycle. To N T

enable a flip-flop to retain its value, we might try to hide the LOAD & 1

rising edge of the clock from the flip-flop, as shown to the right. CLS % incorrect output value
The LOAD input con-trols the clock signals' thFough a m(?tho'd o c J—e/u—\_F\ S

known as clock gating. When LOAD is high, the circuit Soec'o%ﬁaf:'r']g‘gef?gg) ﬁg?ﬁgﬂ%%‘;d)

reduces to a regular D flip-flop. When LOAD is low, the flip-

flop clock input, ¢, is held high, and the flip-flop stores its current value. The problems with clock gating are
twofold. First, adding logic to the clock path introduces clock skew, which may cause timing problems later
in the development process (or, worse, in future projects that use your circuits as components). Second, in
the design shown above, the LOAD signal can only be lowered while the clock is high to prevent spurious
rising edges from causing incorrect behavior, as shown in the timing diagram.

A better approach is to add a feedback loop from the flip-flop’s
output, as shown in the figure to the right. When LOAD is low,

the upper AND gate selects the feedback line, and the register

reloads its current value. When LOAD is high, the lower AND LOAD L
gate selects the I N input, and the register loads a new value. IN D Q
We will generalize this type of selection structure, known as a CLK

multiplexer, later in our course. The result is similar to a gated
D latch with distinct write enable and clock lines.

We can use this extended flip-flop as
a bit slice for a multi-bit register. A
four-bit register of this type is shown to LOAD 1>
the right. Four data lines—one for each
bit—enter the registers from the top of
the figure. When LOAD is low, the logic
copies each flip-flop’s value back to its in-
put, and the I N input lines are ignored.
When LOAD is high, the logic forwards
each IN line to the corresponding flip- D | D | D | D |

flop’s D input, allowing the register to ( F ( (

INg IN, IN, INg

load the new 4-bit value. The use of one

input line per bit to load a multi-bit reg- CLK
ister in a single cycle is termed a parallel Qs Q Q Q
load.
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Shift Registers

Certain types of registers include logic
to manipulate data held within the reg-

ister. A shift register is an important ( ( ( (

example of this type. The simplest
shift register is a series of D flip-flops,
with the output of each attached to (o} Q Q Q
the input of the next, as shown to the

right. In the circuit shown, a serial input ST accepts a single bit of data per cycle and delivers the bit four
cycles later to a serial output SO. Shift registers serve many purposes in modern systems, from the obvious
uses of providing a fixed delay and performing bit shifts for processor arithmetic to rate matching between
components and reducing the pin count on programmable logic devices such as field programmable gate
arrays (FPGAs), the modern form of the programmable logic array mentioned in the textbook.

CLK

An example helps to illustrate the rate matching problem: historical I/O buses used fairly slow clocks, as they
had to drive signals and be arbitrated over relatively long distances. The Peripheral Control Interconnect
(PCI) standard, for example, provided for 33 and 66 MHz bus speeds. To provide adequate data rates, such
buses use many wires in parallel, either 32 or 64 in the case of PCIL. In contrast, a Gigabit Ethernet (local
area network) signal travelling over a fiber is clocked at 1.25 GHz, but sends only one bit per cycle. Several
layers of shift registers sit between the fiber and the I/O bus to mediate between the slow, highly parallel
signals that travel over the I/O bus and the fast, serial signals that travel over the fiber. The latest variant
of PCI, PCle (e for “express”), uses serial lines at much higher clock rates.

Returning to the figure above, imagine that the outputs Q; feed into logic clocked at 1/4** the rate of the
shift register (and suitably synchronized). Every four cycles, the flip-flops fill up with another four bits, at
which point the outputs are read in parallel. The shift register shown can thus serve to transform serial
data to 4-bit-parallel data at one-quarter the clock speed. Unlike the registers discussed earlier, the shift
register above does not support parallel load, which prevents it from transforming a slow, parallel stream
of data into a high-speed serial stream. The use of serial load requires N cycles for an N-bit register, but
can reduce the number of wires needed SHIFT Do
to support the operation of the shift reg- Sl
ister. How would you add support for

parallel load? How many additional in-

puts would be necessary?

SC

The shift register shown above is also in-
capable of storing a value rather than
continuously shifting. The addition of
the same structure that we used to con-
trol register loading can be applied to
control shifting, as shown to the right. Q3 Q Q Qo

CLK

Through the wuse of Qi IN Qg
| 1 -

more complex input Cy—+ D
logic, we can construct !

a shift register with ad- Corbe
ditional functionality.
The bit slice shown to
the right allows us to
build a bidirectional
shift register with
parallel load capa-
bility and the ability
to retain its value
indefinitely. The two control inputs, C; and Cp, make use of a representation that we have chosen for the
four operations supported by our shift register, as shown in the table to the far right.

Cy | meaning

0 retain current value

1 shift left (low to high)
0 | load new value (from IN)
1 shift right (high to low)

»—l»—lOOQ

Q

CLK
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The bit slice allows us

to build N-bit shift reg- si IN3 IN2 INy INo
isters by replicating the ClJ

slice and adding a fixed o i [+ CH—

amount of “glue logic” 781i+1 IN; Qi—q 781i+1 IN; Qi—y 781i+1 IN; Qiy 781&1 IN; Qjy
(for example, the SO —Co Qi HC%o Qi+ HC%o Qi HCo Qi

bidirectional ” bidirectional ” bidirectional ” bidirectional

output logic). The fig- (shiﬂregisterbit shift register bit shift register bit shift register bit
ure to the right repre- CLK ( SC
sents a 4-bit bidirectional ]

shift register constructed (o} Q Q Q
in this way.

At each rising clock edge, the action specified by C1Cy is taken. When C1Cy = 00, the register holds its
current value, with the register value appearing on @[3 : 0] and each flip-flop feeding its output back into
its input. For C1Cy = 01, the shift register shifts left: the serial input, SI, is fed into flip-flop 0, and Q3 is
passed to the serial output, SO. Similarly, when C7Cy = 11, the shift register shifts right: ST is fed into
flip-flop 3, and Qg is passed to SO. Finally, the case C1Cy = 10 causes all flip-flops to accept new values
from IN[3: 0], effecting a parallel load.

Several specialized shift operations are used to support data manipulation in modern processors (CPU’s).
Essentially, these specializations dictate the form of the glue logic for a shift register as well as the serial
input value. The simplest is a logical shift, for which ST and SO are hardwired to 0; incoming bits are
always 0. A cyclic shift takes ST and feeds it back into SO, forming a circle of register bits through which
the data bits cycle.

Finally, an arithmetic shift treats the shift register contents as a number in 2’s complement form. For
non-negative numbers and left shifts, an arithmetic shift is the same as a logical shift. When a negative
number is arithmetically shifted to the right, however, the sign bit is retained, resulting in a function similar
to division by two. The difference lies in the rounding direction. Division by two rounds towards zero in most
processors: —5/2 gives —2. Arithmetic shift right rounds away from zero for negative numbers (and towards
zero for positive numbers): —5 >> 1 gives —3. We transform our previous shift register into one capable of
arithmetic shifts by eliminating the serial input and feeding the most significant bit, which represents the
sign in 2’s complement form, back into itself for right shifts, as shown below.

INg INp INg INo
C1
Co \ ‘
[ \ \ [ +1r2 | 1= [ 0
Qisp INj Qj—g Qivg INj Qj—g Qivg INj Qi Qivp INj Qj—g
HC1 HC1 HC1 HC1
—Co Qi YHco Qi ¢ Hco Qj ¢ Hco Qi
bidirectional bidirectional bidirectional bidirectional
’7 shift register bit ’7 shift register bit ’7 shift register bit ’7 shift register bit
CLK ( SC
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Summary of Part 2 of the Course

The difficulty of learning depends on the type of task involved. Remembering new terminology is relatively
easy, while applying the ideas underlying design decisions shown by example to new problems posed as
human tasks is relatively hard. In this short summary, we give you lists at several levels of difficulty of
what we expect you to be able to do as a result of the last few weeks of studying (reading, listening, doing
homework, discussing your understanding with your classmates, and so forth).

We'll start with the easy stuff. You should recognize all of these terms and be able to explain what they
mean. For the specific circuits, you should be able to draw them and explain how they work. Actually, we
don’t care whether you can draw something from memory—a full adder, for example—provided that you
know what a full adder does and can derive a gate diagram correctly for one in a few minutes. Higher-level
skills are much more valuable. (You may skip the *’d terms in Fall 2012.)

e Boolean functions and logic gates e device technology

- NOT/inverter - complementary metal-oxide
- AND semiconductor (CMOS)

- OR - field effect transistor (FET)
- XOR - transistor gate, source, drain
- NAND e Boolean logic terms

- NOR - literal

- XNOR - algebraic properties

majority function

e specific logic circuits

full adder

ripple carry adder

R-S latch

R-S latch

gated D latch

master-slave implementation of a
positive edge-triggered D flip-flop
(bidirectional) shift register*
register supporting parallel load*

e design metrics

metric

optimal

heuristic

constraints

power, area/cost, performance
computer-aided design (CAD)
tools

gate delay

e general math concepts

canonical form
N-dimensional hypercube

e tools for solving logic problems

truth table

Karnaugh map (K-map)
implicant

prime implicant
bit-slicing

timing diagram

- dual form, principle of duality
- sum, product

- minterm, maxterm

- sum-of-products (SOP)

- product-of-sums (POS)

- canonical sum/SOP form

- canonical product/POS form
- logical equivalence

e digital systems terms

- word size
- N-bit Gray code
- combinational /combinatorial logic
- two-level logic
- “don’t care” outputs (x’s)
- sequential logic
- state
- active low inputs
- set a bit (to 1)
reset a bit (to 0)
- master-slave implementation
- positive edge-triggered
- clock signal
- square wave
- rising/positive clock edge
- falling/negative clock edge
- clock gating
- clocked synchronous sequential circuits
- parallel/serial load of registers*
- glue logic*
- logical/arithmetic/cyclic shift*
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We expect you to be able to exercise the following skills:
e Design a CMOS gate from n-type and p-type transistors.
e Apply DeMorgan’s laws repeatedly to simplify the form of the complement of a Boolean expression.
e Use a K-map to find a reasonable expression for a Boolean function (for example, in POS or SOP form
with the minimal number of terms).
e More generally, translate Boolean logic functions among concise algebraic, truth table, K-map, and
canonical (minterm/maxterm) forms.

When designing combinational logic, we expect you to be able to apply the following design strategies:
e Make use of human algorithms (for example, multiplication from addition).
Determine whether a bit-sliced approach is applicable, and, if so, make use of one.
Break truth tables into parts so as to solve each part of a function separately.
Make use of known abstractions (adders, comparators, or other abstractions available to you) to simplify
the problem.

And, at the highest level, we expect that you will be able to do the following:

e Understand and be able to reason at a high-level about circuit design tradeoffs between area/cost and
performance (and that power is also important, but we haven’t given you any quantification methods).

e Understand the tradeoffs typically made to develop bit-sliced designs—typically, bit-sliced designs are
simpler but bigger and slower—and how one can develop variants between the extremes of the bit-sliced
approach and optimization of functions specific to an N-bit design.

e Understand the pitfalls of marking a function’s value as “don’t care” for some input combinations, and
recognize that implementations do not produce “don’t care.”

e Understand the tradeoffs involved in selecting a representation for communicating information between
elements in a design, such as the bit slices in a bit-sliced design.

e Explain the operation of a latch or a flip-flop, particularly in terms of the bistable states used to hold
a bit.

e Understand and be able to articulate the value of the clocked synchronous design abstraction.
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