
c©2012 Steven S. Lumetta. All rights reserved. 21

ECE199JL: Introduction to Computer Engineering Fall 2012

Notes Set 2.4

Example: Bit-Sliced Comparison

This set of notes develops comparators for unsigned and 2’s complement numbers using the bit-sliced ap-
proach that we introduced in Notes Set 2.3. We then use algebraic manipulation and variation of the internal
representation to illustrate design tradeoffs.

Comparing Two Numbers

Let’s begin by thinking about how we as humans compare two N -bit num-
bers, A and B. An illustration appears to the right, using N = 8. For now,
let’s assume that our numbers are stored in an unsigned representation, so
we can just think of them as binary numbers with leading 0s. We handle
2’s complement values later in these notes.

As humans, we typically start comparing at the most significant bit. After all,
if we find a difference in that bit, we are done, saving ourselves some time. In
the example to the right, we know that A < B as soon as we reach bit 4 and
observe that A4 < B4. If we instead start from the least significant bit, we
must always look at all of the bits.

When building hardware to compare all of the bits at once, however, hardware
for comparing each bit must exist, and the final result must be able to consider

compares in this direction
let’s design logic that

humans usually compare
in this direction

A6A5A4A3A2A1A0A7

1

0

0 0 0 0 100

0 0 0 1 100

B7B6B5 B0B1B2B3B4

B

A

all of the bits. Our choice of direction should thus instead depend on how effectively we can build the
corresponding functions. For a single bit slice, the two directions are almost identical. Let’s develop a bit
slice for comparing from least to most significant.

An Abstract Model

Comparison of two numbers, A and B, can produce three possible answers: A < B, A = B, or A > B (one
can also build an equality comparator that combines the A < B and A > B cases into a single answer).

As we move from bit to bit in our design, how much information needs to pass from one bit to the next? Here
you may want to think about how you perform the task yourself. And perhaps to focus on the calculation
for the most significant bit. You need to know the values of the two bits that you are comparing. If those
two are not equal, you are done. But if the two bits are equal, what do you do? The answer is fairly simple:
pass along the result from the less significant bits. Thus our bit slice logic for bit M needs to be able to
accept three possible answers from the bit slice logic for bit M − 1 and must be able to pass one of three
possible answers to the logic for bit M + 1. Since ⌈log2(3)⌉ = 2, we need two bits of input and two bits of
output in addition to our input bits from numbers A and B.

The diagram to the right shows an abstract model of our comparator bit
slice. The inputs from the next least significant bit come in from the
right. We include arrowheads because figures are usually drawn with
inputs coming from the top or left and outputs going to the bottom or
right. Outside of the bit slice logic, we index these comparison bits using
the bit number. The bit slice has C

M−1

1
and C

M−1

0
provided as inputs

and produces CM

1
and CM

0
as outputs. Internally, we use C1 and C0 to

denote these inputs, and Z1 and Z0 to denote the outputs. Similarly, the

Z

Z

C

C C

A B

A B

CC

C

1

0

1

0 0

M M

11

0

comparator
bit

slice M

M

M

M−1

M−1

bits AM and BM from the numbers A and B are represented internally simply as A and B. The overloading
of meaning should not confuse you, since the context (designing the logic block or thinking about the problem
as a whole) should always be clear.



22 c©2012 Steven S. Lumetta. All rights reserved.

A Representation and the First Bit

We need to select a representation for our three possible answers before we can
design any logic. The representation chosen affects the implementation, as we
discuss later in these notes. For now, we simply choose the representation to the
right, which seems reasonable.

Now we can design the logic for the first bit (bit 0). In keeping with the bit slice
philosophy, in practice we simply use another copy of the full bit slice design for
bit 0 and attach the C1C0 inputs to ground (to denote A = B). Here we tackle
the simpler problem as a warm-up exercise.

C1 C0 meaning
0 0 A = B

0 1 A < B

1 0 A > B

1 1 not used

The truth table for bit 0 appears to the right (recall that we use Z1 and Z0 for
the output names). Note that the bit 0 function has only two meaningful inputs—
there is no bit to the right of bit 0. If the two inputs A and B are the same, we
output equality. Otherwise, we do a 1-bit comparison and use our representation
mapping to select the outputs. These functions are fairly straightforward to derive
by inspection. They are:

Z1 = A B

Z0 = A B

A B Z1 Z0

0 0 0 0
0 1 0 1
1 0 1 0
1 1 0 0

These forms should also be intuitive, given the representation that we chose: A > B if and only if A = 1
and B = 0; A < B if and only if A = 0 and B = 1.

Implementation diagrams for our
one-bit functions appear to the right.
The diagram to the immediate right
shows the implementation as we might
initially draw it, and the diagram on
the far right shows the implementation

Z1

Z0

A

B

Z1

Z0

A

B

converted to NAND/NOR gates for a more accurate estimate of complexity when implemented in CMOS.
The exercise of designing the logic for bit 0 is also useful in the sense that the logic structure illustrated
forms the core of the full design in that it identifies the two cases that matter: A < B and A > B.

Now we are ready to design the full function. Let’s start by writing a full truth table, as shown on the left
below.

A B C1 C0 Z1 Z0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 x x
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 0 1
0 1 1 1 x x
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 0 1 1 x x
1 1 0 0 0 0
1 1 0 1 0 1
1 1 1 0 1 0
1 1 1 1 x x

A B C1 C0 Z1 Z0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 0 1 0 1
1 1 1 0 1 0
x x 1 1 x x

A B C1 C0 Z1 Z0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 0 1
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 0 1 0 1
1 1 1 0 1 0

other x x

In the truth table, we marked the outputs as “don’t care” (x’s) whenever C1C0 = 11. You might recall that
we ran into problems with our ice cream dispenser control in Notes Set 2.2. However, in that case we could
not safely assume that a user did not push multiple buttons. Here, our bit slice logic only accepts inputs



c©2012 Steven S. Lumetta. All rights reserved. 23

from other copies of itself (or a fixed value for bit 0), and—assuming that we design the logic correctly—our
bit slice never generates the 11 combination. In other words, that input combination is impossible (rather
than undesirable or unlikely), so the result produced on the outputs is irrelevant.

It is tempting to shorten the full truth table by replacing groups of rows. For example, if AB = 01, we
know that A < B, so the less significant bits (for which the result is represented by the C1C0 inputs) don’t
matter. We could write one row with input pattern ABC1C0 = 01xx and output pattern Z1Z0 = 01. We
might also collapse our “don’t care” output patterns: whenever the input matches ABC1C0 =xx11, we don’t
care about the output, so Z1Z0 =xx. But these two rows overlap in the input space! In other words, some
input patterns, such as ABC1C0 = 0111, match both of our suggested new rows. Which output should take
precedence? The answer is that a reader should not have to guess. Do not use overlapping rows to shorten

a truth table. In fact, the first of the suggested new rows is not valid: we don’t need to produce output 01 if
we see C1C0 = 11. Two valid short forms of this truth table appear to the right of the full table. If you have
an “other” entry, as shown in the rightmost table, this entry should always appear as the last row. Normal
rows, including rows representing multiple input patterns, are not required to be in any particular order.
Use whatever order makes the table easiest to read for its purpose (usually by treating the input pattern as
a binary number and ordering rows in increasing numeric order).

In order to translate our design into algebra, we transcribe the
truth table into a K-map for each output variable, as shown to the
right. You may want to perform this exercise yourself and check
that you obtain the same solution. Implicants for each output
are marked in the K-maps, giving the following equations:

Z1 = A B +A C1 +B C1

Z0 = A B +A C0 +B C0

C1C0
Z1

00 01 11 10

0 0

1

1

00

01

11

10

AB

1 1

0

0 0

0 0

x

x

x

x 1

C1C0
Z0

00 01 11 10

000

01

11

10

AB
0

x

x

x

x

1

0

1

0

1

1

0

1

0

0

An implementation based on our equations appears to
the right. The figure makes it easy to see the symmetry
between the inputs, which arises from the representation
that we’ve chosen. Since the design only uses two-level
logic (not counting the inverters on the A and B inputs,
since inverters can be viewed as 1-input NAND or NOR
gates), converting to NAND/NOR simply requires replac-
ing all of the AND and OR gates with NAND gates.

Let’s discuss the design’s efficiency roughly in terms of
area and speed. As an estimate of area, we can count
gates, remembering that we need two transistors per input
on a gate. Our initial design uses two inverters, six 2-input
gates, and two 3-input gates.

For speed, we make rough estimates in terms of the
amount of time it takes for a CMOS gate to change its
output once its input has changed. This amount of time
is called a gate delay. We can thus estimate our design’s

Z1

Z0
C0

C1

a comparator bit slice (first attempt)

A

B

speed by simply counting the maximum number of gates on any path from input to output. For this mea-
surement, using a NAND/NOR representation of the design is important to getting the right answer, but, as
we have discussed, the diagram above is equivalent on a gate-for-gate basis. Here we have three gate delays
from the A and B inputs to the outputs (through the inverters). But when we connect multiple copies of
our bit slice logic together to form a comparator, as shown on the next page, the delay from the A and B

inputs to the outputs is not as important as the delay from the C1 and C0 inputs to the outputs. The latter
delay adds to the total delay of our comparator on a per-bit-slice basis. Looking again at the diagram, notice
that we have only two gate delays from the C1 and C0 inputs to the outputs. The total delay for an N -bit
comparator based on this implementation is thus three gate delays for bit 0 and two more gate delays per
additional bit, for a total of 2N + 1 gate delays.



24 c©2012 Steven S. Lumetta. All rights reserved.

0

0Z

Z

C

C

Z

Z

C

C

A B

A B

C

C

Z

Z

C

C

Z

Z

C

C

A B

A B

C

C

A B

A B

C

C

. . .
A B

A B

C

C

1

0

1

0

1

0

1

0

1

0

comparator
bit

1 1

slice 1
1

1

1

0

1

0

1

0

1

0

1

0

comparator
bit

0 0

slice 0

0

0

1

0

comparator
bit

1

0

comparator
bit

N−1

N−1

N−2

N−2

slice N−1 slice N−2

N−1 N−1 N−2 N−2

an N−bit unsigned comparator composed of bit slices

Optimizing Our Design

We have a fairly good design at this point—good enough for a homework or exam problem in this class,
certainly—but let’s consider how we might further optimize it. Today, optimization of logic at this level
is done mostly by computer-aided design (CAD) tools, but we want you to be aware of the sources of
optimization potential and the tradeoffs involved. And, if the topic interests you, someone has to continue
to improve CAD software!

The first step is to manipulate our algebra to expose common terms that occur due to the design’s symmetry.
Starting with our original equation for Z1, we have

Z1 = A B +A C1 +B C1

= A B +
(

A+B
)

C1

= A B +A B C1

Similarly, Z0 = A B +A B C0

Notice that the second term in each equation now includes the complement of first term from the other
equation. For example, the Z1 equation includes the complement of the AB product that we need to
compute Z0. We may be able to improve our design by combining these computations.

An implementation based on our
new algebraic formulation appears
to the right. In this form, we
seem to have kept the same num-
ber of gates, although we have re-
placed the 3-input gates with in-
verters. However, the middle in-
verters disappear when we convert
to NAND/NOR form, as shown be-
low to the right. Our new de-
sign requires only two inverters and
six 2-input gates, a substantial re-
duction relative to the original im-
plementation.

Is there a disadvantage? Yes, but
only a slight one. Notice that the
path from the A and B inputs to
the outputs is now four gates (maxi-
mum) instead of three. Yet the path
from C1 and C0 to the outputs is
still only two gates. Thus, overall,
we have merely increased our N -bit
comparator’s delay from 2N+1 gate
delays to 2N + 2 gate delays.

C1

Z1

C0

Z0

A

B

a comparator bit slice (optimized)

C1

Z1

C0

Z0

A

B

a comparator bit slice (optimized, NAND/NOR)



c©2012 Steven S. Lumetta. All rights reserved. 25

Extending to 2’s Complement

What about comparing 2’s complement numbers? Can we make use of the unsigned comparator that we
just designed?

Let’s start by thinking about the sign of the numbers A and B. Recall that 2’s complement records a
number’s sign in the most significant bit. For example, in the 8-bit numbers shown in the first diagram in
this set of notes, the sign bits are A7 and B7. Let’s denote these sign bits in the general case by As and Bs.
Negative numbers have a sign bit equal to 1, and non-negative numbers have a sign bit equal to 0. The table
below outlines an initial evaluation of the four possible combinations of sign bits.

As Bs interpretation solution
0 0 A ≥ 0 AND B ≥ 0 use unsigned comparator on remaining bits
0 1 A ≥ 0 AND B < 0 A > B

1 0 A < 0 AND B ≥ 0 A < B

1 1 A < 0 AND B < 0 unknown

What should we do when both numbers are negative? Need we
design a completely separate logic circuit? Can we somehow
convert a negative value to a positive one?

The answer is in fact much simpler. Recall that
2’s complement is defined based on modular arithmetic.
Given an N-bit negative number A, the representation for
the bits A[N − 2 : 0] is the same as the binary (unsigned)
representation of A+2N−1. An example appears to the right.

A3A2A1A0 B0B1B2B3

1A (−4)1 0 0 B (−2)1 1 1 0

4 = −4 + 8 6 = −2 + 8

Let’s define Ar = A+ 2N−1 as the value of the remaining bits for A and Br similarly for B. What happens
if we just go ahead and compare Ar and Br using an (N − 1)-bit unsigned comparator? If we find that
Ar < Br we know that Ar − 2N−1 < Br − 2N−1 as well, but that means A < B! We can do the same with
either of the other possible results. In other words, simply comparing Ar with Br gives the correct answer
for two negative numbers as well.

All we need to design is a logic block for the sign bits.
At this point, we might write out a K-map, but instead
let’s rewrite our high-level table with the new informa-
tion, as shown to the right.

Looking at the table, notice the similarity to the high-
level design for a single bit of an unsigned value. The

As Bs solution
0 0 pass result from less significant bits
0 1 A > B

1 0 A < B

1 1 pass result from less significant bits

only difference is that the two A 6= B cases are reversed. If we swap As and Bs, the function is identical.
We can simply use another bit slice but swap these two inputs. Implementation of an N -bit 2’s complement
comparator based on our bit slice comparator is shown below. The blue circle highlights the only change
from the N -bit unsigned comparator, which is to swap the two inputs on the sign bit.

0

0Z

Z

C

C

Z

Z

C

C

A B

A B

C

C

Z

Z

C

C

A

Z

Z

C

C

A B

A B

C

C

A B

B

C

C

. . .
A B

A B

C

C

1

0

1

0

1

0

1

0

1

0

comparator
bit

1 1

slice 1
1

1

1

0

1

0

N−1

1

0

1

0

1

0

comparator
bit

0 0

slice 0

0

0

1

0

comparator
bit

slice N−1

N−1

N−1

N−1

1

0

comparator
bit

N−2 N−2

slice N−2

N−2

N−2

an N−bit 2’s complement comparator composed of bit slices



26 c©2012 Steven S. Lumetta. All rights reserved.

Further Optimization

Let’s return to the topic of optimization. To what extent did the
representation of the three outcomes affect our ability to develop a
good bit slice design? Although selecting a good representation can
be quite important, for this particular problem most representations
lead to similar implementations.

Some representations, however, have interesting properties. Consider

C1 C0 original alternate
0 0 A = B A = B

0 1 A < B A > B

1 0 A > B not used
1 1 not used A < B

the alternate representation on the right, for example (a copy of the original representation is included for
comparison). Notice that in the alternate representation, C0 = 1 whenever A 6= B. Once we have found
the numbers to be different in some bit, the end result can never be equality, so perhaps with the right
representation—the new one, for example—we might be able to cut delay in half?

An implementation based on the
alternate representation appears in
the diagram to the right. As you can
see, in terms of gate count, this de-
sign replaces one 2-input gate with
an inverter and a second 2-input
gate with a 3-input gate. The path
lengths are the same, requiring 2N+
2 gate delays for an N -bit compara-
tor. Overall, it is about the same as
our original design.

C0

Z0

Z1

C1

A

B

a comparator bit slice (alternate representation)

Why didn’t it work? Should we consider still other representations? In fact, none of the possible represen-
tations that we might choose for a bit slice can cut the delay down to one gate delay per bit. The problem
is fundamental, and is related to the nature of CMOS. For a single bit slice, we define the incoming and
outgoing representations to be the same. We also need to have at least one gate in the path to combine
the C1 and C0 inputs with information from the bit slice’s A and B inputs. But all CMOS gates invert the
sense of their inputs. Our choices are limited to NAND and NOR. Thus we need at least two gates in the
path to maintain the same representation.

One simple answer is to use different representations for odd and even bits. Instead, we optimize a logic
circuit for comparing two bits. We base our design on the alternate representation. The implementation is
shown below. The left shows an implementation based on the algebra, and the right shows a NAND/NOR
implementation. Estimating by gate count and number of inputs, the two-bit design doesn’t save much over
two single bit slices in terms of area. In terms of delay, however, we have only two gate delays from C1

and C0 to either output. The longest path from the A and B inputs to the outputs is five gate delays. Thus,
for an N -bit comparator built with this design, the total delay is only N + 3 gate delays. But N has to be
even.

1A

1B

0A

0B

C0

C1

Z1

Z0

a comparator 2−bit slice (alternate representation)

1A

1B

0A

0B

C0

C1

Z1

Z0

a comparator 2−bit slice (alternate representation, NAND/NOR)

As you can imagine, continuing to scale up the size of our logic block gives us better performance at
the expense of a more complex design. Using the alternate representation may help you to see how one
can generalize the approach to larger groups of bits—for example, you may have noticed the two bitwise
comparator blocks on the left of the implementations above.


