
c©2012 Steven S. Lumetta. All rights reserved. 27

ECE199JL: Introduction to Computer Engineering Fall 2012

Notes Set 2.5

Example: Using Abstraction to Simplify Problems

In this set of notes, we illustrate the use of abstraction to simplify problems. In particular, we show how two
specific examples—integer subtraction and identification of upper-case letters in ASCII—can be implemented
using logic functions that we have already developed. We also introduce a conceptual technique for breaking
functions into smaller pieces, which allows us to solve several simpler problems and then to compose a full
solution from these partial solutions.

Together with the idea of bit-sliced designs that we introduced earlier, these techniques help to simplify
the process of designing logic that operates correctly. The techniques can, of course, lead to less efficient
designs, but correctness is always more important than performance. The potential loss of efficiency is often
acceptable for three reasons. First, as we mentioned earlier, computer-aided design tools for optimizing logic
functions are fairly effective, and in many cases produce better results than human engineers (except in the
rare cases in which the human effort required to beat the tools is worthwhile). Second, as you know from the
design of the 2’s complement representation, we may be able to reuse specific pieces of hardware if we think
carefully about how we define our problems and representations. Finally, many tasks today are executed in
software, which is designed to leverage the fairly general logic available via an instruction set architecture.
A programmer cannot easily add new logic to a user’s processor. As a result, the hardware used to execute
a function typically is not optimized for that function. The approaches shown in this set of notes illustrate
how abstraction can be used to design logic.

Subtraction

Our discussion of arithmetic implementation has focused so far on addition. What about other operations,
such as subtraction, multiplication, and division? The latter two require more work, and we will not discuss
them in detail until later in our class (if at all).

Subtraction, however, can be performed almost trivially using logic that we have already designed. Let’s
say that we want to calculate the difference D between two N -bit numbers A and B. In particular, we
want to find D = A− B. For now, think of A, B, and D as 2’s complement values. Recall how we defined
the 2’s complement representation: the N -bit pattern that we use to represent −B is the same as the base 2
bit pattern for (2N − B), so we can use an adder if we first calculate the bit pattern for −B, then add the
resulting pattern to A. As you know, our N -bit adder always produces a result that is correct modulo 2N ,
so the result of such an operation, D = 2N +A−B, is correct so long as the subtraction does not overflow.

How can we calculate 2N −B? The same way that we do by hand! Calculate
the 1’s complement, (2N − 1) − B, then add 1. The diagram to the right
shows how we can use the N -bit adder that we designed in Notes Set 2.3 to
build an N -bit subtracter. New elements appear in blue in the figure—the
rest of the logic is just an adder. The box labeled “1’s comp.” calculates
the 1’s complement of the value B, which together with the carry in value of 1
correspond to calculating −B. What’s in the “1’s comp.” box? One inverter
per bit in B. That’s all we need to calculate the 1’s complement. You might
now ask: does this approach also work for unsigned numbers? The answer is
yes, absolutely. However, the overflow conditions for both 2’s complement and
unsigned subtraction are different than the overflow condition for either type
of addition. What does the carry out of our adder signify, for example? The
answer may not be immediately obvious.

CC

N

1’s comp.

N

N

S

BA

N−bit adder

N

A B

1
What does the

carry out mean?

D=A−B

inout

Let’s start with the overflow condition for unsigned subtraction. Overflow means that we cannot represent
the result. With an N -bit unsigned number, we have A− B 6∈ [0, 2N − 1]. Obviously, the difference cannot
be larger than the upper limit, since A is representable and we are subtracting a non-negative (unsigned)
value. We can thus assume that overflow occurs only when A−B < 0. In other words, when A < B.



28 c©2012 Steven S. Lumetta. All rights reserved.

To calculate the unsigned subtraction overflow condition in terms of the bits, recall that our adder is cal-
culating 2N + A − B. The carry out represents the 2N term. When A ≥ B, the result of the adder is at
least 2N , and we see a carry out, Cout = 1. However, when A < B, the result of the adder is less than 2N ,
and we see no carry out, Cout = 0. Overflow for unsigned subtraction is thus inverted from overflow for

unsigned addition: a carry out of 0 indicates an overflow for subtraction.

What about overflow for 2’s complement subtraction? We can use arguments similar to those that we used
to reason about overflow of 2’s complement addition to prove that subtraction of one negative number from
a second negative number can never overflow. Nor can subtraction of a non-negative number from a second
non-negative number overflow.

If A ≥ 0 and B < 0, the subtraction overflows iff A − B ≥ 2N−1. Again using similar arguments as
before, we can prove that the difference D appears to be negative in the case of overflow, so the product
AN−1 BN−1 DN−1 evaluates to 1 when this type of overflow occurs (these variables represent the most
significant bits of the two operands and the difference; in the case of 2’s complement, they are also the sign
bits). Similarly, if A < 0 and B ≥ 0, we have overflow when A−B < −2N−1. Here we can prove that D ≥ 0
on overflow, so AN−1 BN−1 DN−1 evaluates to 1.

Our overflow condition for N -bit 2’s complement subtraction is thus given by the following:

AN−1 BN−1 DN−1 +AN−1 BN−1 DN−1

If we calculate all four overflow conditions—unsigned and 2’s complement, addition and subtraction—and
provide some way to choose whether or not to complement B and to control the Cin input, we can use the
same hardware for addition and subtraction of either type.

Checking ASCII for Uppercase Letters

Let’s now consider how we can check whether or not an ASCII character is an upper-case letter. Let’s call
the 7-bit letter C = C6C5C4C3C2C1C0 and the function that we want to calculate L(C). The function L

should equal 1 whenever C represents an upper-case letter, and 0 whenever C does not.

In ASCII, the 7-bit patterns from 0x41 through 0x5A correspond to the letters A through Z in order. Perhaps
you want to draw a 7-input K-map? Get a few large sheets of paper! Instead, imagine that we’ve written the
full 128-row truth table. Let’s break the truth table into pieces. Each piece will correspond to one specific
pattern of the three high bits C6C5C4, and each piece will have 16 entries for the four low bits C3C2C1C0.
The truth tables for high bits 000, 001, 010, 011, 110, and 111 are easy: the function is exactly 0. The other
two truth tables appear on the left below. We’ve called the two functions T4 and T5, where the subscripts
correspond to the binary value of the three high bits of C.

C3 C2 C1 C0 T4 T5

0 0 0 0 0 1
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 1 1
0 1 0 0 1 1
0 1 0 1 1 1
0 1 1 0 1 1
0 1 1 1 1 1
1 0 0 0 1 1
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 1 0
1 1 0 0 1 0
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 1 0

T4 C3

C1

00 01 11 10

00 11 1

01 1 1 11

111 1 1 1

10 1 1 1 1

0

C2

C0

T5 C3

C1

00 01 11 10

00 11

01 1 1 1

11 1 1

10 1 1 1

C2

C0

1 0

0

0

0

0

T4 = C3 + C2 + C1 + C0

T5 = C3 + C2 C1 + C2 C0



c©2012 Steven S. Lumetta. All rights reserved. 29

As shown to the right of the truth tables, we can then draw simpler K-maps for T4 and T5, and can solve
the K-maps to find equations for each, as shown to the right (check that you get the same answers).

How do we merge these results to form our final expression for L? We AND each of the term functions (T4

and T5) with the appropriate minterm for the high bits of C, then OR the results together, as shown here:

L = C6 C5 C4 T4 + C6 C5 C4 T5

= C6 C5 C4 (C3 + C2 + C1 + C0) + C6 C5 C4 (C3 + C2 C1 + C2 C0)

Rather than trying to optimize by hand, we can at this point let the CAD tools take over, confident that we
have the right function to identify an upper-case ASCII letter.

Breaking the truth table into pieces and using simple logic to reconnect the pieces is one way to make use of
abstraction when solving complex logic problems. In fact, recruiters for some companies often ask questions
that involve using specific logic elements as building blocks to implement other functions. Knowing that you
can implement a truth table one piece at a time will help you to solve this type of problem.

Let’s think about other ways to tackle the problem of calculating L. In Notes Sets 2.3 and 2.4, we developed
adders and comparators. Can we make use of these as building blocks to check whether C represents an
upper-case letter? Yes, of course we can: by comparing C with the ends of the range of upper-case letters,
we can check whether or not C falls in that range.

The idea is illustrated on the left below using two 7-bit comparators constructed as discussed in Notes Set 2.4.
The comparators are the black parts of the drawing, while the blue parts represent our extensions to calcu-
late L. Each comparator is given the value C as one input. The second value to the comparators is either
the letter A (0x41) or the letter Z (0x5A). The meaning of the 2-bit input and result to each comparator is
given in the table on the right below. The inputs on the right of each comparator are set to 0 to ensure that
equality is produced if C matches the second input (B). One output from each comparator is then routed
to a NOR gate to calculate L. Let’s consider how this combination works. The left comparator compares C
with the letter A (0x41). If C ≥ 0x41, the comparator produces Z0 = 0. In this case, we may have a letter.
On the other hand, if C < 0x41, the comparator produces Z0 = 1, and the NOR gate outputs L = 0, since we
do not have a letter in this case. The right comparator compares C with the letter Z (0x5A). If C ≤ 0x5A,
the comparator produces Z1 = 0. In this case, we may have a letter. On the other hand, if C > 0x5A, the
comparator produces Z1 = 1, and the NOR gate outputs L = 0, since we do not have a letter in this case.
Only when 0x41 ≤ C ≤ 0x51 does L = 1, as desired.

B
Z

Z

C

C

0

0

7 7

0x5A

discard

C

A B
Z

Z

C

C

0

0

discard

7 7

0x41

A
1

0

1

0

comparator
7−bit1

0

1

0

comparator
7−bit

L

Z1 Z0 meaning
0 0 A = B

0 1 A < B

1 0 A > B

1 1 not used



30 c©2012 Steven S. Lumetta. All rights reserved.

What if we have only 8-bit adders available for our use,
such as those developed in Notes Set 2.3? Can we still cal-
culate L? Yes. The diagram shown to the right illustrates
the approach, again with black for the adders and blue
for our extensions. Here we are actually using the adders
as subtracters, but calculating the 1’s complements of the
constant values by hand. The “zero extend” box simply
adds a leading 0 to our 7-bit ASCII letter. The left adder
subtracts the letter A from C: if no carry is produced, we
know that C < 0x41 and thus C does not represent an
upper-case letter, and L = 0. Similarly, the right adder
subtracts 0x5B (the letter Z plus one) from C. If a carry
is produced, we know that C ≥ 0x5B, and thus C does
not represent an upper-case letter, and L = 0. With the
right combination of carries (1 from the left and 0 from the
right), we obtain L = 1.

CCCC

8

zero extend

S

BA

1

discard

8−bit adder

8

8

8

0xA4

S

BA

1

discard

8−bit adder

8

8

7

C 0xBE

inoutinout

L

Looking carefully at this solution, however, you might be struck by the fact that we are calculating two sums
and then discarding them. Surely such an approach is inefficient?

We offer two answers. First, given the design shown above, a good CAD tool recognizes that the sum outputs
of the adders are not being used, and does not generate logic to calculate them. The logic for the two carry
bits used to calculate L can then be optimized. Second, the design shown, including the calculation of the
sums, is similar in efficiency to what happens at the rate of about 1015 times per second, 24 hours a day, seven
days a week, inside processors in data centers processing HTML, XML, and other types of human-readable
Internet traffic. Abstraction is a powerful tool.

Later in our class, you will learn how to control logical connections between hardware blocks so that you
can make use of the same hardware for adding, subtracting, checking for upper-case letters, and so forth.


