
ECE199JL: Introduction to Computer Engineering Fall 2012
Lab 0 Due: see Section 1 below

Introduction to the Lab Environment

The goal of this introductory lab exercise is to introduce you to the tools and environment that you will use
throughout the coming year as well as in future engineering classes. The Engineering Workstations (EWS)
labs serve as the primary academic computing resource for students in the College, and can be accessed
either directly or remotely. To ensure that you have a consistent software environment, most of your classes
(including this one) will require that you make use of EWS for assignments.

By the end of this lab, you will be able to:

• Navigate the Linux directory structure through the command line interface.

• Add, remove, and edit files using the command line terminal.

• Compile a program.

• Use Subversion to maintain a backup copy of your work.

Please note: To help you get started on this assignment, all discussion sections will meet in the

EWS lab located in 440 DCL on Tuesday 28 August. You will need to know the password to your
Illinois (AD domain) account in order to log in.

1 Timing

This laboratory is broken up into several parts:

• Before discussion section on Tuesday 28 August: please read Section 2.

• In discussion section, we will walk through the first steps of the lab (Section 3.2) to make sure that
you are able to complete the lab on your own later.

• By Friday 31 August, you need to complete the survey (Section 3.3), send it to us, and sign up for a
meeting slot.

• Before the second discussion section (on Tuesday 4 September), you need to complete Section 3.4.

The lab also contains a number of appendices intended to serve as reference material.

2 Introduction to Linux/Unix

The computers in the lab are running a Linux operating system. An operating system is the most basic
software running on a computer. It manages the computer’s resources (such as memory), peripherals (such
as a mouse and a keyboard), and application execution. Microsoft Windows, Mac OS, and Unix are examples
of operating systems. Linux is a “Unix-like” operating system. Don’t worry if you do not know what Unix
is. Just know that Linux and Unix are very similar.

The Linux computers in DCL 440 and DCL 520 as well as in Everitt 252 and Grainger 057 are managed by
EWS. When you are logged in to a Linux computer managed by EWS, all of your personal files appear the
same, regardless of which physical EWS computer you are sitting at.

Typically when you first log in to a modern operating system, you will be greeted with a graphical desktop
environment, known as a Graphical User Interface or GUI for short. GUIs allow the user to interact
with the computer by manipulating graphical windows and icons using the mouse. For example, you can
double-click on a folder icon on your desktop and a window opens up showing the contents of that folder.
Generally speaking, you will find documents and folders inside a given folder. These folders can also have
folders and documents inside of them.



2 INTRODUCTION TO LINUX/UNIX 2

subtree

subtree

my_dir1 my_dir2 my_file1 my_file2

my_file3

home

my_netid

/

tree "grows"

root directory

this way

Figure 1: Directory Structure (Tree Representation).

On a Unix system, folders are known as directories, and documents are known as files. Directories inside
of directories are called subdirectories and the directory containing a given directory is called the parent

directory. Files and directories form a directory hierarchy or directory structure. You can think of the
directory structure as a tree where each folder (directory) is a branch of the tree and the leaves are the
documents (files). Figure 1 illustrates this tree structure. The root of the tree is denoted by “/” and the
tree grows downwards.

Each file and directory in the directory structure can be reached using that file’s/directory’s path. Under-
standing paths is your key to navigating the directory structure. There are two types of paths: absolute
path and relative path. An absolute path starts at the root of the filesystem (starts at /) and specifies
each directory prior to reaching the destination file/directory. Each step in this traversal is separated by
a /. Figure 2 identifies the absolute path for each directory in a portion of Fig. 1’s directory structure.

The current working directory is where you currently are in the overall directory structure. This directory
is analogous to viewing a folder in a window using the GUI. The window that you are operating in is the
current working directory. You can only manipulate contents in that window. You would need to change your
current working directory to manipulate files in a different directory. Your home directory is the current
working directory on startup. By default, EWS sets home directories to be at the path /home/my netid

where my netid is your personal NetID.

my_file3

/

Directory Structure

/home/my_netid/my_dir2

/home/my_netid/my_dir2/my_file3

/home/my_netid

/home

/

Absolute PathRelative Path

my_dir2

home

my_netid

my_dir/my_file3

my_dir2

.

..

../..

Current Working Directory

Figure 2: Section of directory structure from Fig. 1 with corresponding absolute and relative paths to each
of the directories.



2 INTRODUCTION TO LINUX/UNIX 3

Sometimes, the absolute path is inconvenient to type out fully, especially with larger directory structures.
You can use the relative path syntax to start the navigation at the current directory instead of at the root
of the directory structure. A syntax is the method to write or express a concept. To indicate a relative
path, you do not start the path with a /. Also you use .. to reference the parent directory. Figure 2 shows
the relative path to each of the directories from the current working directory located at /home/my netid.

A GUI is convenient for new/casual users but this convenience comes at the price of control, expressiveness,
and speed. The GUI takes away control from the user so the user can’t harm the computer unintentionally.
Most operating systems have an alternative interface called a command line interface. In this interface,
instead of telling the system what to do by clicking on icons, you type text commands using the keyboard
into a terminal, and the computer responds with a textual response to this terminal. You can express
advanced actions easily through the command line interface that would take many clicks to do in a GUI, if
it were possible to do through the GUI in the first place.

When you open a terminal window, there is a basic program running called the shell which reads and
interprets the commands you type. The shell breaks down what you type into programs, flags, and arguments.
Commands used in command line follow the following syntax:

program_name [flags] [arg1] ...

The above is called a synopsis. A synopsis describes command line syntax in an abstract way. It is not meant
to be taken literally; each word is a placeholder for the name of real programs and arguments. [Words in
square braces] represent optional arguments. The ellipsis (“...”) means that optional additional arguments
can follow.

Figure 3 shows an example of a command and its syntax breakdown.

cp −r −v −f /home/cco2/my_dir1 /home/cco2/my_dir2

flags argumentsprogram name

Figure 3: Example command and syntax breakdown.



3 STEP BY STEP INSTRUCTIONS 4

3 Step by Step Instructions

3.1 Before Discussion Section

1. You should read and try to understand the high-level overview presented in Section 2. Having a good
high-level idea of what you are working on will make the later sections clearer and quicker. Be sure to
ask a TA if the concepts are unclear.

3.2 Discussion Section

1. Log in to an EWS machine using your netid and Active Directory (AD) password.

2. Launch a new terminal.

You will be greeted with a GUI upon logging in. You will want to launch a new terminal to access the
command line interface. To do so, find “Applications” on the menu bar and click on “System Tools”,
then “Terminal”.

3. Get a copy of the subversion repository by typing: tar xjf /class/ece199/ece199jl-repo.tar.bz2

Subversion is a source control tool that allows you to manage changes to a body of code, even if more
than one person is working on the code at the same time. The files for this first lab will initially be
a private copy. Be warned: executing the command in this step again will destroy your

stored copy of the lab files!

This step is included as a temporary measure until your accounts are fully set up within EWS. Watch
the class web board for instructions on the transition once the accounts are ready, hopefully by the
end of our first week.

4. Checkout a working copy from your subversion repository (the repo directory created in the last step).

You will need to obtain a copy of whatever you will work on. In this class, we will be using Subversion,
a revision control software. Subversion maintains backups of your files as well as merges changes you
or your team members make so that multiple members of a group can edit the same file safely.

There are two parts to Subversion: the repository and the working copy, not to be confused with
current working directory. The repository is the master location where all the backups are stored.
Each backup is associated with a revision number that increases each time you or your teammates
save a working copy to the repository. The working copy is your local copy of the files being saved
in the repository. Changes you make to the working copy do not automatically get saved to the
repository. You must perform a subversion commit to save your working copy to the repository. It
is good practice is to commit often so if something happens to your working copy, you have a recent
backup, or even lots of backups to restore from. For more on Subversion, read Appendix D.

To obtain the working copy of whatever you will work on, you will be performing a subversion checkout.
Run the command: svn checkout file:///home/my netid/repo/lab0 This command copies the
files from your Subversion repository into your current working directory.

5. Navigate to the file discussion0.txt located at /home/my netid/lab0/discussion/discussion0.txt.

The file discussion0.txt is located in the relative path from the directory you checked out your code
from: lab0/discussion/discussion0.txt. The main commands to navigate the directory structure
are pwd, ls, and cd. The pwd (print working directory) command prints where you currently are in
the directory structure. The ls (list) command prints the contents of a given directory. Typing ls by
itself without any arugments will print the contents of the current working directory. The cd (change
directory) command changes your current working directory to the path specified by the argument.
More information on these commands can be found in Appendix A.

To find discussion0.txt, first you must identify where you currently are. Run the command: pwd.
Your output should read: /home/my netid where my netid is your netid. Now that you know where



3 STEP BY STEP INSTRUCTIONS 5

you are and that your destination directory path is /home/my netid/lab0/discussion/, you can run:
cd lab0/discussion to move your current working directory to your destination directory path.

6. Edit discussion0.txt and fill in your name and today’s date.

Now that you’ve found the file, you should edit it. If you have a favorite editor (vim, gedit, emacs,
nano, etc), you can use that if you prefer. We recommend gedit and vim. These instructions will use
gedit since gedit has a very easy learning curve compared to vim, but know that vim is an extremely
common command line editor and we strongly encourage you to sit down and learn vim.

To launch gedit on discussion0.txt, run the command: gedit discussion0.txt. A graphical
window should pop up that contains some text.

7. Commit your discussion0.txt changes to your repository with the message “My first commit”.

You’ve now made changes in this file but they are all local (confined to your working copy). The
repository does not have these changes. You must perform an Subversion commit to push your local
changes to the repository.

To save the changes to the repository, run the command: svn commit -m "My first commit" The
-m "<message>" flag is required when you commit changes to the repository. The message is stored
in a log file that you can read using svn log. Each entry in the log has a revision number and commit
message so if you use detailed commit messages, you know what changes were made for that specific
revision.

8. Delete discussion0.txt from your working copy.

Now let’s say you’re looking to delete your discussion0.txt file. You can use the rm command to
delete the file.

Run the command: rm discussion0.txt. If you type ls, you should notice that discussion0.txt
is no longer there. Remember, once you delete the file, you cannot undo it unless you have some sort
of backup or revision control software (SVN is a revision control software).

9. Restore discussion0.txt from your repository.

Your working copy no longer has discussion0.txt but your Subversion repository has a copy of the
file still. You can perform a Subversion update to update your working copy with the copy stored in
the repository.

Run the command: svn update. If you type ls, you should see discussion0.txt in your working
copy once again.

10. Demo steps 7 and 8 to a TA.

3.3 Survey

1. Inside your working copy, you will have a file called survey.txt. Fill out this survey and e-mail it
to Prof. Lumetta (lumetta@illnois.edu). Be sure to include “ECE199JL” in your subject line, as he
receives a lot of e-mail.

2. Schedule time to meet with the professors. This is an informal meeting where you can get to know
your professors and the professors can get to know more about you.

3.4 Compile and Execute Code

1. Inside your working copy, there is a directory called mp0. Move into that directory. You should see
hello-world.c. The .c extension indicates that this file is a C programming language source file. A
source file contains the instructions a specific program should execute. The source file is written in
a particular coding language - in this case, the language is C.



3 STEP BY STEP INSTRUCTIONS 6

2. We will need to compile the source files into an executable that the computer can then run/execute.
To do this, run the command:

gcc -o hello-world hello-world.c

This command invokes a program called a compiler. The -o <executable name> specifies the
name of the executable output from the compiler. If this flag is not specified, the default name for
the executable is a.out. After all the flags, the source files are named. In this case, there is only one
source file. For more information, read Appendix C.

3. Run the executable using the command: ./hello-world. The program should output “Hello World!”.

4. If you want to change the program, you will need to edit the source file. Open the source file in a text
editor and add “My name is <your name here>!” and your name in place of <your name here> after
“Hello World!”. So if your name is Chris, the line should read: printf("Hello World! My name is

Chris!\n");

5. Anytime you make changes to the program, you will need to recompile the files to generate an updated
executable. Do so and run the program again. You should see the output “Hello World! My name is
<your name here>!”.

6. Commit your changes to your svn repository. Congratulations, you’ve finished the lab!



3 STEP BY STEP INSTRUCTIONS 7

Appendix A: Directory Navigation Commands

Fig. 4 is the sample directory structure used to illustrate the commands in Appendix A and B.

Command Synopsys Full Name Function
pwd pwd print working

directory
Print the absolute path of the current work-
ing directory

Below shows the output of pwd.

[netid@linux3 ~]$ pwd

/home/my_netid

Command Synopsys Full Name Function
ls ls [flags]

[directory path]

list contents Prints the contents of the directories spec-
ified by directory path or the current di-
rectory if directory path is not specified

Below shows the output of ls when run with no arguments.

[netid@linux3 ~]$ ls

my_dir1 my_dir2 my_file1 my_file2

Depending on your terminal, directory and file names could have different colors. By default, ls does not
show hidden files. To do so, use the -a flag.

[netid@linux3 ~]$ ls -a

. .. my_dir1 my_dir2 my_file1 my_file2

The . and .. are hidden in every directory. . refers to the directory itself. This provides a convenient way
for a path to reference itself without needing to type out the full absolute path. .. refers to that directory’s
parent directory. Other common hidden files are configuration files. All hidden files begin with a . as in
.bashrc or .vimrc which are bash and vim configuration files.

subtree

subtree

Current

Working

Directory

my_dir1 my_dir2 my_file1 my_file2

my_file3

home

/

my_netid

Figure 4: Sample directory structure.



3 STEP BY STEP INSTRUCTIONS 8

Command Synopsys Full Name Function
cd cd directory path change directory Changes the current working directory to

the one specified by directory path

The directory path argument can be an absolute or relative path. To change the directory to /home, one
could use the absolute path:

[netid@linux3 ~]$ cd /home

or use the relative path:

[netid@linux3 ~]$ cd ..

because /home is the parent directory of the current working directory /home/my netid. Note that if the cd
command is successful, there will be no output.

Appendix B: Moving and Removing Directories and Files

Command Synopsys Full Name Function
mkdir mkdir directory path make empty di-

rectory
Creates an empty directory at
directory path

The directory path specifies the name and place the new directory should be created. To create a new
subdirectory named my dir3 in the current working directory, one would run:

[netid@linux3 ~]$ mkdir my_dir3

If the mkdir command is successful, there will be no output. Use ls to verify the new directory was created
successfully. Note that one cannot create multiple hierarchical subdirectories at once. Each preceding
subdirectory must be created before the next subdirectory can be made.

Command Synopsys Full Name Function
rmdir rmdir directory path remove empty

directory
Removes an empty directory at
directory path

The directory at directory path must be empty for rmdir to succeed. To delete a new subdirectory named
my dir3 in the current working directory, one would run:

[netid@linux3 ~]$ rmdir my_dir3

There is a shortcut to removing directories that are non-empty using the rm program which is discussed
next.

Command Synopsys Full Name Function
rm rm [flags] path ... Remove file Removes file at path

Suppose one wants to remove my file3 located in my dir2, use the following command:

[netid@linux3 ~]$ rm my_dir2/my_file3



3 STEP BY STEP INSTRUCTIONS 9

As with the other commands, no output means no errors but use ls to verify the command succeeded.

More than one file can be deleted by simply adding more paths at the end of the command. One shorthand
way of specifying all contents in the current directory is to use *. * is a wildcard that refers to all file
and directory names in the current directory. To delete all files in the current working directory, run the
following:

[netid@linux3 ~]$ rm *

The * can also be used to fill partial names. For example, my file* autofills into my file1 and my file2

when used in /home/my netid.

One can remove full directories using the -r flag. The -r flag will remove a directory and all of its contents
(including subdirectories) specified by the path.

[netid@linux3 ~]$ rm -r my_dir2

removes my dir2 and its all of its contents from the directory structure. Be very careful when using the rm

program. Once a file or directory is removed, it’s gone. There is no recycle bin to find your removed files.

Command Synopsys Full Name Function
mv mv source path

destination path

Move
file/directory

Moves file or directory from source path

to destination path

To move my file3 from my dir2 to my dir1, use the following command:

[netid@linux3 ~]$ mv my_dir2/my_file3 my_dir1

A few scenarios exist based on what the destination path points to. If the destination path points to
a directory, then the source file or directory will be moved inside that directory. If the destination path

points to a new path that does not exist yet, the source file/directory will be moved and renamed to the
destination. If the destination path is a file that already exists and the source is a file, the file pointed to
by the destination path will be overwritten without any notification.

Command Synopsys Full Name Function
cp cp [flags]

source path

destination path

copy
file/directory

Copies file or directory from source path

to destination path

The cp program behaves the same as mv, except that the cp duplicates files and directories rather than just
moving them. The -r flag is use to copy whole directories and subdirectories.



3 STEP BY STEP INSTRUCTIONS 10

Appendix C: Compiling Code

Once you’ve edited your source code, you’ll need to compile the code into an executable. This executable
is also known as a program or application. In this class, we will use the GNU C compiler (gcc). The syntax
is:

gcc [flags] file1 ...

Flags are denoted with a leading dash. Some flags have arguments associated with them. Below is an
example that compiles the source code foo.c into an executable.

[netid@linux3 ~]$ gcc -g -Wall -o foo foo.c

The -g flag specifies to compile with debug symbols. These debug symbols allow you to attach an application
known as a debugger to help you find bugs in your code. The -Wall flag enables all warnings generated
during compilation to be displayed as the output from the gcc command. The -o arg1 flag specifies the
name of the resulting executable as arg1. If -o arg1 flag is not given, the executable will be named a.out.

To run the executable created from the commands above, type:

[netid@linux3 ~]$ ./foo

Appendix D: Revision Control

Revision control (or version control) is a tool to manage changes to files. Have you ever made a change to
a document that you later regretted? A revision control system allows you to keep track of the different
versions of a document, so that you can revert back to before you made an unwanted change. Revision
control is especially useful in team projects where multiple people are making changes to a set of documents.
Revision control software automatically handles separate changes to the same file and merges them so you
do not have to.

In this class, we will be using a revision control system called Subversion. Subversion maintains a central
repository which has one or more revisions of a directory and all of its contents. The repository is placed on
a separate computer/server. You can get a copy of that directory in a process called a checkout. You can
make local changes to your copy of the directory, and then add the new version to the central repository in
a process called a commit.

We’ve already set up a central repository for you. You can view the contents of your repository using with
a web browser; just go to:

https://subversion.ews.illinois.edu/svn/fa12-ece199/[netid]

where [netid] is a placeholder for your netid. If you can’t access your repository, let a TA know.

svn checkout - The program for doing all work in subversion is called svn. The checkout syntax is as
follows:

svn checkout url directory

From your home directory, you’ll want to do something like this:

[netid@linux3 ~]$ svn checkout https://subversion.ews.illinois.edu/svn/fa12-ece199/[netid] ece199

This will create a working copy of your repository, which is a local copy for you to work on. This working
copy is separate from the repository. This command will put this working copy in a directory called ece199.



3 STEP BY STEP INSTRUCTIONS 11

svn status - This command allows you to see what has changed in the your local working copy of the
repository Here’s a sample output from the command:

[netid@linux3 ~]$ svn status

M foo.txt

The “M” means that the file has been modified from the original working copy you checked out. A “D”
indicates a deleted file and an “A” indicates a file to add to revision control.

svn commit - Remember that all modifications you make are all on your local working copy. Nothing has
changed in the repository. To modify the repository with your changes, you must commit your working copy.
An example of this is below:

svn commit -m ‘‘Removed last line of foo.txt"

In this case, the -m (for message) is an option flag with an argument. It specifies a message to be associated
with the new version you are sending to the repository. These messages will be useful if you ever realize you
made a mistake and need to go back and find a particular revision, so make them good summaries of the
changes you’ve made.

svn add - This command tells the repository what files it should retain. By default, the repository is empty
and you must manually add the files you want the repository to track. An example is below:

svn add foo.txt

foo.txt must be a valid file. This command tells the repository to start tracking changes to the foo.txt

file. When we run svn status, we see an “A” next to foo.txt. Note that you must run svn commit to tell
the repository you’ve added this file.

svn mv, svn rm, svn cp - When we’re working with a local copy of a subversion repository, the best
way to perform file moving operations is to use the subversion wrapped version of these programs, so that
subversion knows what is going on and doesn’t get confused. A wrapped version of a program is one that
does what the original does with some additional functionality. These commands will work just like the
original versions, except that subversion does some additional bookkeeping to track of what has changed:

svn mv source destination

svn cp source destination

svn rm file1 ...

svn revert - If you make a mistake that you haven’t committed, you can revert your changes back to the
last commit with the revert command:

svn revert [-R] file_or_directory ...

You can revert individual files, or entire directories. You will need to use the -R flag to revert directories and
their contents. Notice that this is a capital R instead of a lowercase r. Unfortunately, different programs
don’t necessarily agree on the meaning of flags; you’ll just have to remember that svn uses a capital R.

svn update - When someone else commits changes to your repository, your working copy will become out of
date. To update your working copy of your repository, run the following command from inside your working
copy:

svn update

You should always run this command before you commit to make sure your working copy is up to date.



3 STEP BY STEP INSTRUCTIONS 12

Appendix E: Other Tips/Commands to Make Your Life Easier

man: To get very detailed syntax for a particular program, use the man utility:

man [section] program

For example, to get help on using rm, run:

[netid@linux3 ~]$ man rm

To scroll down, hit the return key To exit, hit “q”.

Tab Completion: Another useful command line trick is tab completion. Whenever you’re typing a path
into the terminal, you can just enter the first few characters, hit the tab key, and the shell will attempt to
complete the rest for you. You can use this trick as often as you like in a command. On other shells, hitting
tab twice will also show you a list of possible completions.

Command History: Similar to tab completion, command history allows you to cycle through previously
executed commands in the shell. You can use the up and down arrows to navigate the command history.

Vim: Vim is another popular text editor and our personal recommendation. Vim is a command line based
text editor and is a universally recognized text editor. Because it is command line based, it can still be used
on operating systems that don’t have GUIs (typically found on server/cluster operating systems). Vim has
a steeper learning curve but once you get the basics, simple editing becomes quick. There are also lots of
special advanced commands that can also make your life easier should you choose to learn/use them. Vim
has a graphical counterpart called gvim if you have a GUI available to you. You’ll want to read the separate
vim reference guide if you’ve never used vim before and want to try it out. To launch vim, type:

vim [file]

Makefile: As code projects get bigger and bigger, the line(s) you write to compile your code get larger too.
Wouldn’t it be easier to just type one command to compile all of your code for you? Makefiles provide
this. Makefiles are special files that, when executed, auto-generate the compilation commands and flags.

We have provided a sample Makefile for you. In order to execute the compile line from before, all you need
to type is:

[netid@linux3 ~]$ make

Similarly, if you want to remove all of the compiled files and start from scratch (which you will have to do
very often), you run the command:

[netid@linux3 ~]$ make clean

This is just the beginning of the potential uses for Makefiles. They are very powerful, especially when dealing
with many files. Keep in mind that they must be written and tailored to auto-generate the commands
required for the specific codes you are compiling. They have a special syntax that you must follow. We will
give you more information on Makefiles later in our class.


