
ECE199JL: Introduction to Computer Engineering Fall 2012

Homework 8 Due: at start of lecture on Friday 19 October

Finite State Machines

Please do problem 3.43 from the textbook.

Here are five additional problems for this week:

1. Understanding Sequential Logic

Write a full truth table for the circuit shown to the right. For each
input combination, your table should include a row for every stable
state.

Can this circuit store a bit? Explain your answer in terms of the
truth table.

Q

Q

D

E

2. Analyzing an FSM

The state machine shown to the right is driven by three buttons
labeled “1,” “5,” and “9.” The inputs shown in the diagram corre-
spond to the buttons being pressed, so, for example, B1 = 1 when
the “1” button is pressed, and B1 = 0 when the “1” button is not
pressed.

A. Assuming that only one button is pressed in each cycle, what
sequence of buttons must be pressed to make this FSM output a 1
(that is, to make OUT = 1)?

B. Explain how you can simplify the design (use fewer gates to
implement the same FSM).

D

Q

Q

S1

D

Q

Q

S2

S0

B9

B5

B1

D

Q

Q

CLOCK

OUT

3. Serial Addition

Design a serial adder to match the block diagram shown to the right. In particular,
your adder should accept one bit per cycle on the A and B inputs, starting with the
least significant bit and working upward in significance. The F input indicates the start
of a new addition, and should be set to 1 when the least significant bit is entered (and
reset to 0 for all other bits).

Your adder should produce the sum bit S (each cycle) and carry out bit Cout (when the
addition is done) in the next cycle—do NOT route a full adder’s output directly to the

output of your design!

C

A B

S

F out
serial
adder

Hint: This design requires two flip-flops, a full adder, and one extra gate. If you use an extra gate or two,
that’s acceptable, but use these components as building blocks to get full credit.

Turn in a clearly drawn implementation diagram (similar to those shown for other problems in this home-
work).



4. A Bidirectional Binary Counter

Implement the state machine shown to the right, which is a 2-bit binary
counter with a control input C that specifies whether the counter counts
upward (C = 1) or downward (C = 0). States are named and labeled with
the internal state bits (call them S1 and S0) and the outputs (call them Q1

and Q0), which in this design are equal to the state bits. In other words,
Q1 = S1 and Q0 = S0 in all cases.

Turn in a clearly drawn implementation diagram (similar to those shown for
other problems in this homework).

C=0 C=0

C=0 C=0

C=1

C=1C=1

C=1

ONE
01/01

TWO
10/10

THREE
11/11

ZERO
00/00

5. Software FSMs

Finite state machines also play important roles in software design, including digital control system imple-
mentation and event-driven software design (most web services, user interfaces, and a growing number of
games are designed in this way) as well as parts of compilers.

In this problem, you must draw a state transition diagram corresponding to an adventure game. In the
game, each “room” is a state, and the input values (0, 1, or 2 for our game) correspond to transitions.

Download the program dungeon.c from our class’ web page and draw a state transition diagram. Use the
room number from the code to label the states, and the input value (0, 1, or 2) to label transitions between
states. Note that the game ends in some of the rooms, so your diagram should not have transition arcs
leaving these states.


