
ECE 190
Introduction to Computing Systems

Lab Manual
University of Illinois at Urbana-Champaign

Contents

1 LC-3 Convert . 1
2 LC-3 Assembler . 2
3 LC-3 Simulator . 3
4 GNU C Compiler - gcc . 4
5 Debugging with GDB and DDD . 5
6 Vim and gVim . 7
7 Emacs and XEmacs .8
8 Tutorial One - Linux and LC-3 Tools . 9
9 Tutorial Two - C Programming .15
10 Tutorial Three - Debugging with GDB .21
11 Extension to Lecture One .29
12 Memory Example .31
13 Soda Dispenser .32
14 Counting Example .33
15 Read Number - Machine Code .35
16 Read Number - Systematic Decomposition .36
17 Letter Frequency - Machine Code .37
18 Letter Frequency - Assembly Code .38
19 Read Number Subroutine .39
20 Dump Memory .40
21 Factorial .41
22 Number Translator .42
23 Insertion Sort .43
24 Input and Output in Unix and C .44
25 Line Sort .49
26 Unique Count .51
27 Word Split .52
28 Memory Management header .53
29 Memory Management code .54
30 Object-oriented Programming .57
31 Advice .68

i

1 LC-3 Convert

Thelc3convert program converts machine code to an executable that can be run in the simulator.

Note: The first line in the program contains the address of the first instruction. For example, if the
first line of the program is0011 0000 0000 0000 , the first instruction will be located atx3000

when running the simulator.

Command Description
lc3convert yourfile.bin lc3convert will create yourfile.obj , which

can then be used in the simulator.
lc3convert -b2 yourfile.bin Signifies that “yourfile.bin ” has ma-

chine code in binary (base 2). Same as
“ lc3convert yourfile.bin ”.

lc3convert -b16 yourfile.bin Signifies that “yourfile.bin ” has machine code
in hex (base 16).

Errors Description
line contains only x digits Indicates that onlyx digits of a 16-bit LC-3 instruc-

tion was specified.
line contains more than 16 digits Indicates that the line has too many digits.
contains unrecognizable characters Indicates that invalid characters were used.
constant outside of allowed range Immediate values such asimm5, PCoffset11 ,

PCoffset9 , offset6 , and trapvect8 have a
valid range of [−2num bits−1, 2num bits−1 − 1].
(This error only applies if the file is in hex.)

1

2 LC-3 Assembler

The LC-3 Assembler (lc3as) assembles the file so it can be run in the simulator.

Command Description
lc3as yourfile.asm Createsyourfile.obj , which is the object file that can be

loaded into the simulator andyourfile.sym , which is the sym-
bol table.

Errors Description
file contains only comments Indicates that there are no assembly instructions in the file,

only comments.
no .ORIG or .END directive found All programs must begin with.ORIG followed by the start-

ing address of the program, and must end with.END.
no .ORIG directive found All programs must begin with.ORIG followed by the start-

ing address of the program.
multiple .ORIG directives found Only one.ORIG command is allowed per file.
instruction appears before .ORIG Instructions must start after the.ORIG directive.
no .END directive found All programs must end with.END.
label appears before .ORIG All code must be after the.ORIG directive.
label x has already appeared Indicates that a second label with the same name has been

found.
unknown label x Indicates that labelx is referenced, but does not exist.
label has already appeared Each label in a program must only be used once. However,

it can be referenced multiple times.
illegal operands for x Indicates that the instruction has invalid operands.
unterminated string Indicates that a string specified by the.STRINGZ directive

was not closed with quotation marks.
contains unrecognizable charac-
ters

Indicates the line has characters that the assembler cannot
parse.

WARNING: All text after .END ig-
nored

Any instructions after the.END directive are not processed
by the assembler.

constant outside of allowed range All constants are limited by their bitwidth. The valid range
is [−2num bits−1, 2num bits−1 − 1].

Note: the assembler will tell the total number of errors found in each pass and the line on which
these errors occur. However, the assembler only checks for syntax errors, not whether the code is
actually doing what it is supposed to.

2

3 LC-3 Simulator

The Linux/UNIX version of the simulator is used in this class and will be the version that all the
programs are tested against. It is STRONGLY recommended that you use this version rather than
the Windows version.

Basic Commands
Command Description
lc3sim yourfile.obj Load your program into thecommand-line simulator.

You can also type lc3sim and use the command
“ file yourfile.obj ” to load the program.

lc3sim-tk yourfile.obj Load your program into thegraphical simulator. You
can also typelc3sim-tk and load a file by clicking the
“Browse” button at the bottom of the screen.

reset Reset the LC-3 and reload the last file.
quit Quit the simulator.
help Print the help message.

Running the program
Command Description
continue Continues (or starts) execution of the program.
break Sets a breakpoint. In the graphical version, you can double-click on a

memory location to set a breakpoint. The line will turn red when a break-
point is set.

finish Execute until the end of the current subroutine.
next Execute next instruction. If the next instruction is a subroutine (JSR) or

TRAP, it will execute the entire subroutine orTRAP.
step Execute one instruction. If the next instruction is a subroutine (JSR) or

TRAP, it will step intothe subroutine orTRAP.

Examining Memory and Registers1

Command Description
list List instructions at the PC, an address, or label.
dump ... Dump memory at the PC, and address, or a label.
translate <addr> Show the value of a label and print the contents.
printregs Print registers and current instruction.
memory <addr> <val> Set the value stored at a memory location.
register <reg> <val> Set a register to a value.
execute <file name> Execute a script file.

1The graphical version displays memory and registers, so these commands are specific to the command-line version.
After editing a register or memory value in the graphical version, press the Enter key to apply the change.

3

4 GNU C Compiler - gcc

Programs written in C for the class will be compiled using the GNU C compiler (gcc). gcc is
available on all the Linux EWS machines. Although you may work on other machines to write your
code, all C programs will be compiled usinggcc for grading, so it is your responsibility to make
sure it works on the Linux EWS machines.

gcc has many flags and command-line options, so only those used by the class are described here.
For more information aboutgcc , seehttp://gcc.gnu.orgor type “man gcc” on a Linux machine.
For each MP, we will provide the correct command to compile your program withgcc .

The typical command to compile C programs for this class is
gcc -Wall -ansi -g -o mp_num mp_num.c

Flag Description
-Wall Turns on all warnings when compiling.
-ansi Makesgcc use the ISO C89 standard.
-g Creates debugging symbols so you can run your program in a debugger.
-o Specifies the name of the compiled program. In the example above, the pro-

gram would be named “mp_num”.

After all the flags comes the source file(s). In the example above, the source file ismp_num.c .

4

5 Debugging with GDB and DDD

The GNU Project Debugger,gdb , is a command-line program that allows you to debug the C
programs that you will write. The DataDisplayDebugger,ddd , is a graphical front-end forgdb , so
all the gdb commands work for it as well. It will be useful to know how to use a debugger since
some of the C programming assignments at the end of the semester are more challenging. Even if
you do not need a debugger for this class, you will need one at some point in the future, so now is
a good time to learn. More documentation ongdb is available athttp://www.gnu.org/software/gdb/,
and more information onddd can be found athttp://www.gnu.org/software/ddd/.

Compiling: When compiling withgcc , make sure to use the “-g ” flag, which will compile with
debugging symbols for use withgdb .

Basic Commands
Command Description
gdb my_program_name Start GDB.
ddd my_program_name Start DDD.
quit Quit GDB or DDD.

Program Control Flow
Command Description
run Start the debugged program. If the program takes command-line argu-

ments, you may specify them as well. For example, if you normally start
the program with the command “my_program argument1 ”, you would
use the command “run argument1 ”.

finish Finish executing until the selected stack frame returns.
continue Continue to run the program until the next breakpoint. Use thecontinue

command after you have hit a breakpoint and want to continue running
the program.

step Step through a line of source in the program.step will step intofunction
(subroutine) calls.

next Step through the program, butstep overthe function (subroutine) calls
(the function calls will still execute).

Displaying Information
Command Description
list List the source code of the program with line numbers. You can also

specify a line number to display the source code around that line (e.g.,
list 100 .

print Print out an expression (variables, etc.).
info break Print out breakpoint information.
info locals Print out local variables.
info function Print out all function names.
info variables Print out all global and static variables.

5

Breakpoints
Command Description
break <line # or function name> Set a breakpoint at the specified line (e.g.,

break 100) or at the specified function (e.g.,
break foo).

cond <breakpoint #> <C expression> Set a conditional breakpoint that will only
break when the C expression evaluates to true
(e.g.,cond 1 if (x > 0) will make break-
point 1 only break if the variablex is greater
than 0).

delete <breakpoint #> Delete the breakpoint.

Stack Information
Command Description
where or bt Print a backtrace of all the stack frames.
up Move up to the stack that called this one.
down Move down to the stack called by this one.

6

6 Vim and gVim

Vim is different than most editors because it has several modes, such as normal mode (command
mode), visual mode, and insert mode. Typing “vimtutor ” in an xterm window will start a tutorial
that teaches the basics of Vim. For more detailed information on Vim seehttp://www.vim.org.

Basic Commands
Command Description
vim or gvim Start Vim or gVim.
vim my_file Open a file in Vim.
i Switch to insertion mode. Vim starts in command mode, which does not

allow you to edit text. Switching to insertion mode allows you to edit text.

Command Mode Operations
Command Description
escape Switches to command mode. Being in command mode allows you to per-

form the operations listed below.
:w Save (write) the file you are currently editing.
:q Quit Vim.
:q ! Quit Vim without saving changes.
:line Jump to line numberline (e.g., “:30 ” will jump to line 30.)
:u Undo.
CTRL-R Redo.
y Copy (yank) highlighted text.
d Cut highlighted text.
p Paste text.

Visual mode: Another mode that lets you select text for copying and pasting. To switch to visual
mode pressCTRL-V. You can then use the arrow keys to select text. After selecting text, press
escape to switch back to command mode.

7

7 Emacs and XEmacs

Unlike Vim, Emacs does not have modes. Emacs commands are typically written in the form
“C-x C-s ”, which means holdCTRLandx , then pressCTRLands . Some commands are written
such as “M-x ”, where M stands for the meta key, which corresponds toALT or escape on most
machines. For more detailed information on Emacs visithttp://www.gnu.org/software/emacs/.

Basic Commands
Command Description
emacs or xemacs Start Emacs or XEmacs.
emacs my_new_file Create a new file.
C-h t Start the Emacs tutorial.
C-x C-s Save the file.
C-x C-c Exit Emacs.
M-x goto-line Go to a specific line number.
M-w Copy highlighted text.
C-w Cut highlighted text.
C-_ Undo (holdCTRL, shift , and the dash).
C-y Paste text.

8

ECE 190 University of Illinois at Urbana-Champaign 1

ECE190 Tutorial One

John H. Kelm

Introduction to Linux and LC-3 Tools

ECE 190 University of Illinois at Urbana-Champaign 2

Logging In and Account Access● You can log in locally using any of the EWS machines
located in Everitt, Engineering Hall, DCL, or Grainger.● Any of these machines can also be accessed remotely. ● Once you login, enter the command ece190ece190ece190ece190 to access your
ece190 directory located under: '/work2/ece190/<net id>''/work2/ece190/<net id>''/work2/ece190/<net id>''/work2/ece190/<net id>'● From this directory you will have access to all the LC-3
commands and the handin command to submit your
completed Machine Problems.● Note: Grading is done on EWS Linux machines—make
sure your code works on one of these machines before
turning it in.

9

ECE 190 University of Illinois at Urbana-Champaign 3

Basic Command Reference
Command Description

man <command>man <command>man <command>man <command> Prints the manual page help information
(usage:'man ssh')

lslslsls, ls , ls , ls , ls ----alalalal List contents of directory

cdcdcdcd <directory><directory><directory><directory> Change the current directory—with no
options, takes you to your home
directory

rmrmrmrm <filename><filename><filename><filename> Remove a file (Caution!)

pwdpwdpwdpwd Print the current directory

cp <src file> <dest file>cp <src file> <dest file>cp <src file> <dest file>cp <src file> <dest file> Copy a file from one location to
another

mvmvmvmv <src file> <dest file><src file> <dest file><src file> <dest file><src file> <dest file> Move a file from one location to
another (Caution!)

ECE 190 University of Illinois at Urbana-Champaign 4

A Sample LC-3 ASM File

Run the command ece190ece190ece190ece190 and follow the steps below.

eelnx12>eelnx12>eelnx12>eelnx12> ece190ece190ece190ece190
ece190>ece190>ece190>ece190> pwdpwdpwdpwd
/work2/ece190/jkelm2/work2/ece190/jkelm2/work2/ece190/jkelm2/work2/ece190/jkelm2
ece190>ece190>ece190>ece190> cd /homesta/ece190/linux_tutorial/cd /homesta/ece190/linux_tutorial/cd /homesta/ece190/linux_tutorial/cd /homesta/ece190/linux_tutorial/
ece190>ece190>ece190>ece190> lslslsls
mp0.asmmp0.asmmp0.asmmp0.asm
ece190>ece190>ece190>ece190> cp mp0.asm /work2/ece190/jkelm2/cp mp0.asm /work2/ece190/jkelm2/cp mp0.asm /work2/ece190/jkelm2/cp mp0.asm /work2/ece190/jkelm2/
ece190>ece190>ece190>ece190> cd /work2/ece190/jkelm2cd /work2/ece190/jkelm2cd /work2/ece190/jkelm2cd /work2/ece190/jkelm2
ece190>ece190>ece190>ece190> lslslsls
mp0.asm mp0.asm mp0.asm mp0.asm ----shellshellshellshell
ece190>ece190>ece190>ece190> vim mp0.asmvim mp0.asmvim mp0.asmvim mp0.asm

See where you currently are in the filesystem.

Go to TA directory.

Copy the file to your home directory.

Go back to your home directory.

10

ECE 190 University of Illinois at Urbana-Champaign 5

Text Editor Choices● Editors:

– Vim (or gVim)● Check out http://www.vim.org for more details.

– Emacs (or XEmacs)● Go to http://www.gnu.org/software/emacs/ to learn
about this option.● Make sure you know how to open, edit, close, save

files—this may sound trivial, but both have large
learning curves due to their immense power and utility.

ECE 190 University of Illinois at Urbana-Champaign 6

LC-3 Assembler

Purpose: Convert human-readable LC-3 assembly code into
machine-readable object (.obj) file.

Example:
ece190>ece190>ece190>ece190> lslslsls
mp0.asmmp0.asmmp0.asmmp0.asm
ece190>ece190>ece190>ece190> lc3as mp0.asmlc3as mp0.asmlc3as mp0.asmlc3as mp0.asm
STARTING PASS 1STARTING PASS 1STARTING PASS 1STARTING PASS 1
0 errors found in first pass.0 errors found in first pass.0 errors found in first pass.0 errors found in first pass.
STARTING PASS 2STARTING PASS 2STARTING PASS 2STARTING PASS 2
0 errors found in second pass.0 errors found in second pass.0 errors found in second pass.0 errors found in second pass.
ece190>ece190>ece190>ece190> lslslsls
mp0.asmmp0.asmmp0.asmmp0.asm mp0.objmp0.objmp0.objmp0.obj mp0.symmp0.symmp0.symmp0.sym
ece190>ece190>ece190>ece190>

Assembly code to turn into an object file.

Run lc3aslc3aslc3aslc3as and check for
errors.

Symbol File: Contains a mapping between
symbols and addresses.
(e.g., LOOP� x3001)

Object File: The executable for the simulator.

11

ECE 190 University of Illinois at Urbana-Champaign 7

LC-3 Simulator
Purpose: To step through the output of an LC-3 program cycle

by cycle.
Example:

Note: There is a GUI version (lc3simlc3simlc3simlc3sim----tktktktk) that can also be used.

ece190>ece190>ece190>ece190> lslslsls
mp0.asm mp0.obj mp0.symmp0.asm mp0.obj mp0.symmp0.asm mp0.obj mp0.symmp0.asm mp0.obj mp0.sym
ece190>ece190>ece190>ece190> lc3sim mp0.objlc3sim mp0.objlc3sim mp0.objlc3sim mp0.obj

............
PC=x0494 IR=xB1AE PSR=x0400 (ZERO) PC=x0494 IR=xB1AE PSR=x0400 (ZERO) PC=x0494 IR=xB1AE PSR=x0400 (ZERO) PC=x0494 IR=xB1AE PSR=x0400 (ZERO)
R0=x0000 R1=x7FFF R2=x0000 R3=x0000 R4=x0000 R5=x0000 R6=x0000 RR0=x0000 R1=x7FFF R2=x0000 R3=x0000 R4=x0000 R5=x0000 R6=x0000 RR0=x0000 R1=x7FFF R2=x0000 R3=x0000 R4=x0000 R5=x0000 R6=x0000 RR0=x0000 R1=x7FFF R2=x0000 R3=x0000 R4=x0000 R5=x0000 R6=x0000 R7=x04907=x04907=x04907=x0490

x0494 x0FF9 BRNZP TRAP_HALTx0494 x0FF9 BRNZP TRAP_HALTx0494 x0FF9 BRNZP TRAP_HALTx0494 x0FF9 BRNZP TRAP_HALT
Loaded "mp0.obj" and set PC to x3000Loaded "mp0.obj" and set PC to x3000Loaded "mp0.obj" and set PC to x3000Loaded "mp0.obj" and set PC to x3000
(lc3sim) help(lc3sim) help(lc3sim) help(lc3sim) help

............

Start the simulator with assembled object file.

Current value of general purpose registers.

Special Registers:
PC – current address of execution.
IR – instruction being executed.
PSR – processor state register.

Print list of available commands.

ECE 190 University of Illinois at Urbana-Champaign 8

LC-3 Command Reference● breakbreakbreakbreak (clear | list | set <label | address>) – Sets a
breakpoint where execution will stop.● step/next – move from one instruction to the next (i.e., state transition/clock tick)● continue/finish – Run the code up until the next breakpoint (or run it until
complete).● list <label | address > – Print the code/data around the address or label given as
an argument.● dump <label | address> – Display values in memory near location taken as
argument.● memory/register – Allows the user to set value in memory or register,
respectively.● reset/quit – Restart the simulation at .ORIG address or leave the simulation,
respectively.

12

ECE 190 University of Illinois at Urbana-Champaign 9

Submitting Your Finished Work

1) Log in to an EWS machine.
2) Run the ece190 command and make sure the file you are

submitting is located in the current directory
3) Submit your MP by running handin.

Example:
mycomputermycomputermycomputermycomputer$$$$ sshsshsshssh ----ljkelm2 eelnx12.ews.uiuc.eduljkelm2 eelnx12.ews.uiuc.eduljkelm2 eelnx12.ews.uiuc.eduljkelm2 eelnx12.ews.uiuc.edu
please enter your password: ******please enter your password: ******please enter your password: ******please enter your password: ******
eelnx12>eelnx12>eelnx12>eelnx12> ece190ece190ece190ece190
ece190>ece190>ece190>ece190> lslslsls
mp0.asmmp0.asmmp0.asmmp0.asm
ece190>ece190>ece190>ece190> handinhandinhandinhandin --------MP 0 mp0.asmMP 0 mp0.asmMP 0 mp0.asmMP 0 mp0.asm
The file “mp0.asm” has been copied.The file “mp0.asm” has been copied.The file “mp0.asm” has been copied.The file “mp0.asm” has been copied.

............
ece190>ece190>ece190>ece190> exitexitexitexit
eelnx12>eelnx12>eelnx12>eelnx12> exitexitexitexit

Make sure you are in your ece190 account.

Check to make sure file exists.

Turn in the file (can be done multiple
times before deadline).

Check handinhandinhandinhandin output to make sure file was copied.

ECE 190 University of Illinois at Urbana-Champaign 10

Advice● Backup often

– Example: Create backup and disable writing
cp mp1.bin mp1_backup0.bincp mp1.bin mp1_backup0.bincp mp1.bin mp1_backup0.bincp mp1.bin mp1_backup0.bin

chmod achmod achmod achmod a----w mp1_backup0.binw mp1_backup0.binw mp1_backup0.binw mp1_backup0.bin● Learn to use command line tools

– Example:● Vim instead of gVim.● Commands: cpcpcpcp, rmrmrmrm, mvmvmvmv, etc. instead of a GUI FS
manager.

13

ECE 190 University of Illinois at Urbana-Champaign 11

Supplemental: Remote Login● EWS only allows secure logins—i.e., ssh,
putty, sftp● CITES has information on obtaining and
installing SSH clients:
http://www.cites.uiuc.edu/security/ssh/index.html● There is a listing of EWS machines at
http://www.ews.uiuc.edu/labs/.

14

ECE 190 University of Illinois at Urbana-Champaign 1

Introduction to C Programming

John H. Kelm

ECE190 Tutorial Two

ECE 190 University of Illinois at Urbana-Champaign 2

Vim/Emacs Setup

• Use syntax highlighting and automatic
indentation to make bug finding easier.

• We created setup files for Emacs and Vim.

cp /homesta/ece190/for_students/.vimrc ~/.cp /homesta/ece190/for_students/.vimrc ~/.cp /homesta/ece190/for_students/.vimrc ~/.cp /homesta/ece190/for_students/.vimrc ~/.vimrcvimrcvimrcvimrc
…or……or……or……or…
cp /homesta/ece190/for_students/.vimrc ~/.cp /homesta/ece190/for_students/.vimrc ~/.cp /homesta/ece190/for_students/.vimrc ~/.cp /homesta/ece190/for_students/.vimrc ~/.gvimrcgvimrcgvimrcgvimrc
…or……or……or……or…
cp /homesta/ece190/for_students/.emacs ~/.cp /homesta/ece190/for_students/.emacs ~/.cp /homesta/ece190/for_students/.emacs ~/.cp /homesta/ece190/for_students/.emacs ~/.emacsemacsemacsemacs

15

ECE 190 University of Illinois at Urbana-Champaign 3

Compilation Process

Note: Linking omitted for clarity

my_mp_code.c

(C file)

my_mp

(x86 Linux ELF
executable)

my_mp_code.S

(x86 ASM file)

You know this from the LC-3

gcc gas

ECE 190 University of Illinois at Urbana-Champaign 4

Creating a C Program

• Go to your favorite text editor (which of course is Vim)

• Save the file as: c_tut.c

#include <#include <#include <#include <stdio.hstdio.hstdio.hstdio.h>>>>

intintintint main() {main() {main() {main() {
printf(“printf(“printf(“printf(“IIII <3 ECE190.<3 ECE190.<3 ECE190.<3 ECE190.\\\\nnnn”);”);”);”);
return return return return 0000;;;;

}}}}

This is what gives us printf()

16

ECE 190 University of Illinois at Urbana-Champaign 5

Compiling First C Program

• In the same directory as where you just saved the file,
compile it.

– gcc – The GNU compiler (Important: GNU is Not Unix!)

– -Wall -ansi – Turn on all warnings (More on this soon)

– -o<output_file> – Where the executable will go

– -g – Include a symbol table with the executable (For debugging)

• Run the program:

ece190>ece190>ece190>ece190> gccgccgccgcc ----ansiansiansiansi ----Wall Wall Wall Wall ----g g g g ----oc_tutoc_tutoc_tutoc_tut c_tut.cc_tut.cc_tut.cc_tut.c

ece190>ece190>ece190>ece190> ./c_tut./c_tut./c_tut./c_tut
I <3 ECE190!I <3 ECE190!I <3 ECE190!I <3 ECE190!
ece190>ece190>ece190>ece190>

ECE 190 University of Illinois at Urbana-Champaign 6

Warnings and Errors

• The -Wall -ansi command line arguments
will force gcc to show ALL warnings.

• We require that your program create NO
warnings or errors.

• A warning is a friendly reminder that although
what you are doing functions, it is incorrect.

• An error is a not so friendly reminder that
something is incorrect and compilation cannot
proceed.

17

ECE 190 University of Illinois at Urbana-Champaign 7

Adding User Input

• We now want to allow the user to input a number and
then print it back out to the screen.

• Recompile!

#include <#include <#include <#include <stdio.hstdio.hstdio.hstdio.h>>>>

intintintint main() {main() {main() {main() {
intintintint input;input;input;input;
printf(“printf(“printf(“printf(“InputInputInputInput:::: ”);”);”);”);
scanf(“scanf(“scanf(“scanf(“%d%d%d%d”, &input);”, &input);”, &input);”, &input);
printf(“printf(“printf(“printf(“YouYouYouYou entered: %entered: %entered: %entered: %dddd\\\\nnnn”, input);”, input);”, input);”, input);
return 0;return 0;return 0;return 0;

}}}}

Note: &input is the address

Further Note: input is the value

ECE 190 University of Illinois at Urbana-Champaign 8

Conditionals

• What if we only want to print out numbers
greater than 5?

intintintint main() {main() {main() {main() {
…………
scanf(“%dscanf(“%dscanf(“%dscanf(“%d”, &input);”, &input);”, &input);”, &input);
if (input > 5) if (input > 5) if (input > 5) if (input > 5)

printf(“printf(“printf(“printf(“YouYouYouYou entered: %entered: %entered: %entered: %dddd\\\\nnnn”, input);”, input);”, input);”, input);
elseelseelseelse

printf(“printf(“printf(“printf(“YourYourYourYour number was less than 5!number was less than 5!number was less than 5!number was less than 5!\\\\nnnn”);”);”);”);
return 0;return 0;return 0;return 0;

}}}}

Why are there no braces?

18

ECE 190 University of Illinois at Urbana-Champaign 9

Looping Constructs

• What if we want to say we really love the class?

• Note: We used braces (‘{‘ and ‘}’), but here we did not
need to. If the block of code inside the loop (or
conditional!) is more than one line, they are required.

#include <#include <#include <#include <stdio.hstdio.hstdio.hstdio.h>>>>

intintintint main() {main() {main() {main() {
intintintint i;i;i;i;
for (i = 0; i < 5; i++) {for (i = 0; i < 5; i++) {for (i = 0; i < 5; i++) {for (i = 0; i < 5; i++) {

printf(“printf(“printf(“printf(“IIII <3 ECE190.<3 ECE190.<3 ECE190.<3 ECE190.\\\\nnnn”);”);”);”);
}}}}
return return return return 0000;;;;

}}}}

What value does this have?

ECE 190 University of Illinois at Urbana-Champaign 10

Switch Statements

• Used when you need to make a decision
that may have many outcomes
char input;char input;char input;char input;
printf(“selectprintf(“selectprintf(“selectprintf(“select a state (‘g’, ‘y’, ‘r’): “);a state (‘g’, ‘y’, ‘r’): “);a state (‘g’, ‘y’, ‘r’): “);a state (‘g’, ‘y’, ‘r’): “);
scanf(“%cscanf(“%cscanf(“%cscanf(“%c”, &input);”, &input);”, &input);”, &input);
switch (input) {switch (input) {switch (input) {switch (input) {

case ‘g’:case ‘g’:case ‘g’:case ‘g’:
printf(“Green!printf(“Green!printf(“Green!printf(“Green!\\\\nnnn”);”);”);”);
break;break;break;break;

/* other cases *//* other cases *//* other cases *//* other cases */
default:default:default:default:

printf(“Badprintf(“Badprintf(“Badprintf(“Bad input!input!input!input!\\\\n”);n”);n”);n”);
break;break;break;break;

}}}}

Fall-through case

Remember to use a break

19

ECE 190 University of Illinois at Urbana-Champaign 11

Debugging Tips

• Errors and warnings will happen, but not in MP’s
that get turned in for all the credit you deserve
☺.

• Use printfprintfprintfprintf()()()() calls to diagnose problems.
• Think about whether you are dealing with

addresses (i.e., pointers) or values (i.e.,
locations in memory)

• Know what *, **, & are doing to alter the
meaning of your variables.

• The GNU debugger, gdb, is a vital tool--we will
introduce it at a later date.

20

ECE 190 University of Illinois at Urbana-Champaign 1

Debugging with GDB

John H. Kelm

ECE190 Tutorial Three

ECE 190 University of Illinois at Urbana-Champaign 2

Role of Debugging

• A way to find and correct runtime errors.
• Pointer analysis is hard to do statically

(i.e., at compile time).
• Semantics and Algorithms : Code looks

correct, but produces incorrect results.
Check by stepping through execution.

• Debugging can answer one important
question: Where is this darn segfault
coming from?

21

ECE 190 University of Illinois at Urbana-Champaign 3

Common Error Types

• Dereferencing null pointers
*ptr = 5

• Buffer overflow
int array[10];

…

array[i] = 0xBEEF;

• Infinite looping
for(i = 0; i < 10; i--) { … }

What if we set ptr to NULL by mistake?

(e.g., str_ptr = NULL instead of *str_ptr = NULL)

What if i == -4? Will this always
crash?

Where is array in memory?

ECE 190 University of Illinois at Urbana-Champaign 4

GDB Commands

• run arg1 arg2 … – Start the program in motion.
• step – Go one line of code forward (may be multiple

instructions).
• next – Like step, but steps over function calls (i.e., you

do not start stepping through a function call, rather
you step to the line proceeding the call).

• break label – When the application is about to execute
this line, stop.

• delete <bp #> – Remove a breakpoint.
• continue – Restart execution from a breakpoint.
• Ctrl+C – Stop gdb. Useful when you are stuck in an

infinite loop.

22

ECE 190 University of Illinois at Urbana-Champaign 5

GDB Commands (cont.)

•print symbol – Print a variable (can use *ptr to get value
of a pointer).

•list – Print C code for where we are in the program.
•info locals – Display the local variables.
•disassemble – View x86 assembly language of our

program.
•bt – Get a back trace (i.e., view the call stack)
•frame – The current stack frame.
•kill – Terminate the program (send it a SIGKILL—more on

this in 391 or an OS class).
•quit – Exit gdb.

ECE 190 University of Illinois at Urbana-Champaign 6

Getting Started

• Log into your ece190 account.
• Get the file:

cp /homesta/ece190/for_students/gdb_test.c ~/cp /homesta/ece190/for_students/gdb_test.c ~/cp /homesta/ece190/for_students/gdb_test.c ~/cp /homesta/ece190/for_students/gdb_test.c ~/

• Compile the file (Must have -g flag):
gccgccgccgcc ----g g g g ----ogdb_testogdb_testogdb_testogdb_test gdb_test.cgdb_test.cgdb_test.cgdb_test.c

• Try executing gdb_testgdb_testgdb_testgdb_test and watch it fail :-(.
• Start the application in gdb:

gdbgdbgdbgdb ././././gdb_testgdb_testgdb_testgdb_test

23

ECE 190 University of Illinois at Urbana-Champaign 7

Stepping

• Concept : Just like lc3sim, but a whole line
of C code (which could be any number of
x86 instructions).

• This is the basic form of movement
through programs that you will do in
ECE190.

• But the program just executes and either
crashes or finishes—how do I ‘step’?

ECE 190 University of Illinois at Urbana-Champaign 8

Breakpoints

• Stop program prior to execution of a
specific line of code.

(gdb) break main

Breakpoint 1 at 0x80483bb: file gdb_test.c, line 6.

How do I do it?

A basic method for stopping
execution immediately and allowing
you to step through it from the start is
by setting a breakpoint at main().
For this to work, the breakpoint must
be set prior to typing run.

How does GDB do it?
GDB is smart and places the
equivalent of a TRAP in LC-3 at the
point you want to break (gdb for x86
machines use the int3 instruction).
When the program being traced (for
more information look into the Linux
ptrace facilities) by gdb hits that
point, the OS is summoned and
runs a special routine that hands
control off to gdb. You can consider
it magic.

24

ECE 190 University of Illinois at Urbana-Champaign 9

Start Running!

• We can view the breakpoint:

• We will now let execution begin and go to our
first breakpoint:

• We can view the where we are in the code too:

(gdb) info breakpoints

(gdb) run

...GDB Information Stuff...

char str[10] = “Howdy”;

(gdb)

(gdb) list

ECE 190 University of Illinois at Urbana-Champaign 10

Move Around a Little

• Now we can proceed a little bit, step a few times:

• Where are we in the stack? A less trivial example:

(gdb) step

11 for (i = 0; i > -10; i++) {

(gdb) kill

(gdb) b bar

(gdb) run

(gdb) bt

#0 bar (d=12472013) at gdb_test.c:35

#1 0x080483fe in foo() at gdb_test.c:31

#2 0x08048378 in main () at gdb_test.c:13

Where you are now.

What is this? Where would it be in memory?

25

ECE 190 University of Illinois at Urbana-Champaign 11

Displaying Values

• We can stop the program, but what
information can we get about that current
process’ state? Nifty Hints:

gdb can do auto-completion
by hitting tab after print. You
may also want to look deeper
into the use of info
commands. (Type ‘help info’
at the (gdb) prompt).

To dump all local variable
values try : info locals

The command ‘print’ allows us to view
the value of a particular variable that is
in the current scope of execution. This
is the main piece of information you will
be interested while debugging in
ECE190.

(gdb) print str_ptr

$1 = 0xbfffb220 “Howdy”

ECE 190 University of Illinois at Urbana-Champaign 12

How Does Any This Help Us?

• It may not be clear at first, but not all problems
can be solved by strategically placing printf()

(even with fflush(stdout)!)

• If the application just segfaults, like this one,
what can we do?
– Randomly change things until it works.
– Scatter printf statements everywhere.
– Use the debugger, of course!

26

ECE 190 University of Illinois at Urbana-Champaign 13

What is a Segmentation Fault?
• Requires understanding paging (note: segmentation is a bit of a

misnomer and really a relic from old architectures like x86 that think
segmentation is cool)—All of this is way beyond the scope of
ECE190.

What you need to know:
– You own a certain area of memory (e.g., your application space, your

stack space, your global variables)
– You cannot touch other parts of memory (e.g., whatever really is at

address 0x0 (NULL pointer—usually nothing is here), or thinking in
terms of LC3—A regular user should not be able to alter the trap space
that the OS owns).

– If you try to dereference (i.e., get the value at) a pointer to a location you
do not own, Linux causes your program to die . (Your program becomes
0xDEADBEEF or rather, a SIGSEGV AKA a segmentation violation).

ECE 190 University of Illinois at Urbana-Champaign 14

Let Us Find That Segfault

• Load the program back into gdb and start
the application with the ‘run’ command.

What happened to my program?

Program received signal SIGSEGV, Segmentation fault.

0x0804838a in main () at gdb_test.c:18

18 if (*str_ptr != ‘o’)

(gdb)
Where did it happen?

Whatcha’ gonna do?
Who you gonna call?
Ghostbusters? No. GDB!

Who did this to me?

The OS did it because you did
something bad.

27

ECE 190 University of Illinois at Urbana-Champaign 15

How to be Sure This is Wrong

• Remember, we can view values at
runtime? Well we can even see them after
the crash:

Let us take a look at that pointer
we are dereferencing first.

(gdb) print str_ptr

$1 = 0x1 <Address 0x1 out of bounds>

(gdb) Intuition: What do all of the addresses
in our program look like? Does
address ‘0x1’ look the same way?

ECE 190 University of Illinois at Urbana-Champaign 16

Determine What We Did Wrong

• Now we may want to look at the code and
see why Linux crashed our hapless
application.
(gdb) list

………Lots and lots of code………

18 if (*str_ptr != ‘o’)

19 str_ptr = NULL;

………more code………

(gdb)
Hrm...Did we mean to make that pointer
NULL? Or did we want the value
pointed to by that pointer to be NULL?

The offending line of code.

28

ECE190: Introduction to Computing Systems Fall 2005
Extension to Lecture 1

This handout describes the first problem known to be undecidable. This material is beyond the
scope of the course but is nonetheless reasonably accessible and important, and you should
eventually (in future semesters) be able to recognize it readily. This material is not intended to be
part of the core material for the class, and you will not be tested on it; it’s just for fun and the
future.

The Halting Problem

Another thing that Alan Turing did in his paper in 1936 was to introduce (and prove) that there
are in fact problems that cannot be computed by a universal computing machine, or Turing
machine, as we’ve come to call them today (remember also that everything that we call a
computer today is equivalent to a Turing machine). The problem that proved indecidable, using
proof techniques almost identical to those developed for similar problems in the 1880s, is now
known as the halting problem, and is the subject of this document.

Turing also conjectured that his definition of computable was identical to the “natural” definition.
In other words, a problem that cannot be solved by a Turing machine cannot be solved in any
systematic manner, with any machine, or by any person. This thesis remains unproven!
However, neither has anyone been able to disprove the thesis, and it is widely believed to be true.
Disproving the thesis requires that one demonstrate a systematic technique (or a machine) capable
of solving a problem that cannot be solved by a Turing machine. No one has been able to do so
to date.

The halting problem is easy to state and easy to prove undecidable. The problem is this: given a
Turing machine and an input to the Turing machine, does the Turing machine finish computing in
a finite number of steps (a finite amount of time)? In order to solve the problem, an answer,
either yes or no, must be given in a finite amount of time regardless of the machine or input in
question. Clearly some machines never finish. For example, we can write a Turing machine that
counts upwards starting from one.

To see that no Turing machine can solve the halting problem, we begin by assuming that such a
machine exists, and then show that its existence is self-contradictory. We call the machine the
“Halting Machine,” or HM for short. HM is a machine that operates on another machine and its
inputs to produce a yes or no answer in finite time: either the machine in question finishes in
finite time (HM returns “yes”), or it does not (HM returns “no”). The figure below shows its
operation:

From HM, we construct a second machine that we call the HM Inverter, or HMI. This machine
inverts the sense of the answer given by HM. In particular, the inputs are fed directly into a copy
of HM, and if HM answers “yes,” HMI enters an infinite loop. If HM answers “no,” HMI halts.
A diagram appears on the next page.

HM
Turing

machine
+ inputs

yes
or
no

29

The inconsistency can now be seen by asking HM whether HMI halts when given itself as an
input (repeatedly). Two copies of HM are thus being asked the same question. One copy is the
one that we are using, and the second is embedded in the HMI machine that we are using as the
input to our HM. As the two copies of HM operate on the same input (HMI operating on HMI),
they should return the same answer: a Turing machine either halts on an input, or it does not; they
are deterministic.

Let’s assume that the HM tells us that HMI operating on itself halts. Then the copy of HM in
HMI (when HMI executes on itself, with itself as an input) must also say “yes.” But this answer
implies that HMI doesn’t halt (see the figure above), so the answer should have been no!

Alternatively, we can assume that HM says that HMI operating on itself does not halt. Again, the
copy of HM in HMI must give the same answer. But in this case HMI halts, again contradicting
our assumption.

Since neither answer is consistent, no consistent answer can be given, and the original assumption
that HM exists is incorrect. Thus no Turing machine can solve the halting problem.

You may be familiar with a related problem known as the Liar’s paradox (which is at least 2,300
years old). In its stengthened form, it is the following sentence: “This sentence is not true.”

HMI

no
done

HM
Turing

machine
+ inputs

HM
said yes?

yes

count forever

30

2

ADDR WE 1

0OUT

0

1OUT2OUT

IN 2 IN IN

WE

Q

D Q

WE

D Q

WE

D Q

WE

D Q

WE

D Q

WE

D Q

WE

D

D Q

WE

D Q

WE

D Q

WE

WE

QD D Q

WE

decoder
a 2−input

3
2
1
0

31

D

Q

Q

S1

D

Q

Q

S0

C0

C1

C2

D1

D0

(DEW button)

(TAB button)

(coins in)

CLOCK

(DEW)

(TAB)

a one−cycle soda dispenser

32

02/14/05
12:12:02 1counting-example

 counting to ten with PC-relative addressing

0x3000 0010 010 010011111 ___

0x3001 0001 010 010 1 00001 ___

0x3002 0011 010 010011101 ___

 .
 . (something that we want to do ten times)
 .

0x3010 0001 010 010 1 10110 ___

0x3011 0000 100 111101110 ___

 .
 .
 .

0x30A0 0000000000000000 ___

 counting to ten with indirect addressing

0x3000 1010 011 010011111 ___

0x3001 0001 100 011 1 00001 ___

0x3002 1011 100 010011101 ___

 .
 . (something that we want to do ten times)
 .

0x3010 0001 100 100 1 10110 ___

0x3011 0000 100 111101110 ___

 .
 .
 .

0x30A0 0100000100100011 ___

 .
 .
 .

0x4123 0000000000000000 ___

33

02/14/05
12:12:02 2counting-example

 counting to ten with base+offset addressing

0x3000 1110 110 010011111 ___

0x3001 0110 001 110 000000 ___

0x3002 0001 001 001 1 00001 ___

0x3003 0111 001 110 000000 ___

 .
 . (some more complex task that we want to do ten times)
 .

0x3018 0001 001 001 1 10110 ___

0x3011 0000 100 111100111 ___

 .
 .
 .

0x30A0 0000000000000000 ___

34

09/19/05
17:30:53 1readnum.bin

; read a decimal number from the keyboard,
; convert it from ASCII to 2’s complement, and
; store it in a predefined memory location. If
; any non-numeric character is pressed, or the
; number overflows, store a 0 and print an error
; message.

; R0 holds the value of the last key pressed
; R1 holds the current value of the number being input
; R2 holds the additive inverse of ASCII ’0’ (0xFFD0)
; R3 is used as a temporary register

00110000 00000000 ; starting address is x3000

0010 010 000010100 ; LD R2,x14 (put the value -x30 in R2)
0101 001 001 1 00000 ; AND R1,R1,#0 (clear the current value)
1111 0000 00100000 ; TRAP x20 (read a character)
1111 0000 00100001 ; TRAP x21 (echo it back to monitor)
0001 011 000 1 10110 ; ADD R3,R0,#-10 (compare with ENTER)
0000 010 000010001 ; BRz x11 (ENTER pressed, so done)
0001 000 000 0 00 010 ; ADD R0,R0,R2 (subtract x30 from R0)
0000 100 000010001 ; BRn x11 (smaller than ’0’ means error)
0001 011 000 1 10110 ; ADD R3,R0,#-10 (check if > ’9’)
0000 011 000001111 ; BRzp xF (greater than ’9’ means error)
0001 011 001 0 00 001 ; ADD R3,R1,R1 (sequence of adds multiplies R1 by 10)
0000 100 000010101 ; BRn x15 (overflow, but not really necessary here)
0001 011 011 0 00 011 ; ADD R3,R3,R3
0000 100 000010011 ; BRn x13 (overflow, but not really necessary here)
0001 001 001 0 00 011 ; ADD R1,R1,R3
0000 100 000010001 ; BRn x11 (overflow)
0001 001 001 0 00 001 ; ADD R1,R1,R1
0000 100 000001111 ; BRn xF (overflow)
0001 001 001 0 00 000 ; ADD R1,R1,R0 (finally, add in new digit)
0000 100 000001101 ; BRn xD (overflow)
0000 111 111101101 ; BRnzp 0x1ED (get another digit)

11111111 11010000 ; the additive inverse of ASCII ’0’
11111111 11111111 ; storage for the result

; done
0011 001 111111110 ; ST R1,x1FE
1111 0000 00100101 ; TRAP x25

; print error message: "non-digit pressed"
; R4 holds pointer to character
; R0 used to pass output character to trap
; end of string marked with negative value
1110 100 000001001 ; LEA R4,x9 (point R4 to the start of the string)
0110 000 100 000000 ; LDR R0,R4,#0 (read character pointed to by R4)
0000 100 000000011 ; BRn x3 (done printing)
1111 0000 00100001 ; TRAP x21 (print the character)
0001 100 100 1 00001 ; ADD R4,R4,#1 (point to next character)
0000 111 111111011 ; BRnzp x1FB (loop to read string)
0101 001 001 1 00000 ; AND R1,R1,#0 (clear the current value)
0000 111 111110110 ; BRnzp x1F6 (store the zero and end)

; print error message: "overflow"
1110 100 000010101 ; LEA R4,x15 (point R4 to the start of the string)
0000 111 111110111 ; BRnzp x1F7 (branch back to the string-printing code)

; first error message (all in ASCII)
00000000 00001010 ; LF (line feed)
00000000 01101110 ; ’n’
00000000 01101111 ; ’o’
00000000 01101110 ; ’n’
00000000 00101101 ; ’-’
00000000 01100100 ; ’d’
00000000 01101001 ; ’i’
00000000 01100111 ; ’g’
00000000 01101001 ; ’i’
00000000 01110100 ; ’t’
00000000 00100000 ; ’ ’
00000000 01110000 ; ’p’
00000000 01110010 ; ’r’
00000000 01100101 ; ’e’
00000000 01110011 ; ’s’
00000000 01110011 ; ’s’
00000000 01100101 ; ’e’
00000000 01100100 ; ’d’
00000000 00001010 ; LF (line feed)
11111111 11111111 ; end of string marker

; second error message (all in ASCII)
00000000 00001010 ; LF (line feed)
00000000 01101111 ; ’o’
00000000 01110110 ; ’v’
00000000 01100101 ; ’e’
00000000 01110010 ; ’r’
00000000 01100110 ; ’f’
00000000 01101100 ; ’l’
00000000 01101111 ; ’o’
00000000 01110111 ; ’w’
00000000 00001010 ; LF (line feed)
11111111 11111111 ; end of string marker

35

DONE

increment
non−alpha counter

increment
alpha counter

> ’z’ ?
YesNo

< ’a’ ?
NoYes

> ’Z’ ?

increment
non−alpha counter

increment
alpha counter

increment
non−alpha counter

point to next
character

< ’A’ ?
NoYes

= NUL ?

YesNo

No

Yes

into registers:
load useful values

−’A’, ’Z’ − ’A’,
’A’−’a’

point to start
of string

fill histogram
with zeroes

START

load pointer
to histogram

in
it

ia
li

ze
count

36

09/26/05
15:17:43 1letterfreq.bin

; Count the occurrences of each letter (A to Z)
; in an ASCII string terminated by a NUL character.
; Lower case and upper case should be counted
; together, and a count also kept of all
; non-alphabetic characters (not counting the
; terminal NUL).

; The string starts at x4000.

; The resulting histogram (which will NOT be
; initialized in advance) should be stored starting
; at x3100, with the non-alphabetic count at x3100,
; and the count for each letter in x3101 (A) through
; x311A (Z).

; R0 holds a pointer to the histogram (x3100)
; R1 holds a pointer to the current position in the string
; and holds the loop count during histogram initialization
; R2 holds the current character being counted
; and is also used to point to the histogram entry
; R3 holds the additive inverse of ASCII ’@’ (0xFFC0)
; R4 holds the difference between ASCII ’@’ and ’Z’ (xFFE6)
; R5 holds the difference between ASCII ’@’ and ’‘’ (xFFE0)
; R6 is used as a temporary register

00110000 00000000 ; starting address is x3000

1110 000 011111111 ; LEA R0,xFF (point R0 to the start of the histogram)

; fill the histogram with zeroes
0101 110 110 1 00000 ; AND R6,R6,#0 (put a zero into R6)
0010 001 000100000 ; LD R1,x20 (initialize loop count to 27)
0001 010 000 1 00000 ; ADD R2,R0,#0 (copy start of histogram into R2)
; loop to fill histogram starts here
0111 110 010 000000 ; STR R6,R2,#0 (write a zero into histogram)
0001 010 010 1 00001 ; ADD R2,R2,#1 (point to next histogram entry)
0001 001 001 1 11111 ; ADD R1,R1,#-1 (decrement loop count)
0000 001 111111100 ; BRp x1FC (continue until loop count reaches zero)

; initialize R1, R3, R4, and R5 from memory
0010 011 000011011 ; LD R3,x1B (set R3 to additive inverse of ASCII ’@’)
0010 100 000011011 ; LD R4,x1B (R4 holds difference between ASCII ’@’ and ’Z’)
0010 101 000011011 ; LD R5,x1B (R5 holds difference between ASCII ’@’ and ’‘’)
0010 001 000011011 ; LD R1,x1B (point R1 to start of string)

; the counting loop starts here
0110 010 001 000000 ; LDR R2,R1,#0 (read the next character from the string)
0000 010 000010100 ; BRz x14 (found the end of the string)

0001 010 010 0 00 011 ; ADD R2,R2,R3 (subtract ’@’ from the character)
0000 001 000000100 ; BRp x4 (branch if > ’@’, i.e., >= ’A’)

0110 110 000 000000 ; LDR R6,R0,#0 (load the non-alpha count)
0001 110 110 1 00001 ; ADD R6,R6,#1 (add one to it)
0111 110 000 000000 ; STR R6,R0,#0 (store the new non-alpha count)
0000 111 000001100 ; BRnzp xC (branch to end of conditional structure)

0001 110 010 0 00 100 ; ADD R6,R2,R4 (compare with ’Z’)
0000 001 000000101 ; BRp x5 (branch if > ’Z’)

; note that we no longer need the current character
; so we can reuse R2 for the pointer to the correct
; histogram entry for incrementing
0001 010 010 0 00 000 ; ADD R2,R2,R0 (point to correct histogram entry)
0110 110 010 000000 ; LDR R6,R2,#0 (load the count)
0001 110 110 1 00001 ; ADD R6,R6,#1 (add one to it)
0111 110 010 000000 ; STR R6,R2,#0 (store the new count)
0000 111 000000101 ; BRnzp x5 (branch to end of conditional structure)

; subtracting as below yields the original character minus ’‘’
0001 010 010 0 00 101 ; ADD R2,R2,R5 (subtract ’‘’ - ’@’ from the character)
0000 110 111110011 ; BRnz x1F3 (if <= ’‘’, i.e., < ’a’, increment non-alpha)

0001 110 010 0 00 100 ; ADD R6,R2,R4 (compare with ’z’)
0000 110 111110111 ; BRnz x1F7 (if <= ’z’, go increment alpha count)
0000 111 111110000 ; BR x1F0 (otherwise, go increment non-alpha)

0001 001 001 1 00001 ; ADD R1,R1,#1 (point to next character in string)
0000 111 111101010 ; BRnzp x1EA (go to start of counting loop)

1111 0000 00100101 ; TRAP x25 (done)

; the data needed by the program
00000000 00011011 ; 27 loop iterations
11111111 11000000 ; the additive inverse of ASCII ’@’
11111111 11100110 ; the difference between ASCII ’@’ and ’Z’
11111111 11100000 ; the difference between ASCII ’@’ and ’‘’
01000000 00000000 ; string starts at x4000

37

09/26/05
15:17:43 1letterfreqasm.asm

; (An assembly-language version of the original binary code.)

; Count the occurrences of each letter (A to Z)
; in an ASCII string terminated by a NUL character.
; Lower case and upper case should be counted
; together, and a count also kept of all
; non-alphabetic characters (not counting the
; terminal NUL).

; The string starts at x4000.

; The resulting histogram (which will NOT be
; initialized in advance) should be stored starting
; at x3100, with the non-alphabetic count at x3100,
; and the count for each letter in x3101 (A) through
; x311A (Z).

; R0 holds a pointer to the histogram (x3100)
; R1 holds a pointer to the current position in the string
; and as the loop count during histogram initialization
; R2 holds the current character being counted
; and is also used to point to the histogram entry
; R3 holds the additive inverse of ASCII ’@’ (0xFFC0)
; R4 holds the difference between ASCII ’@’ and ’Z’ (xFFE6)
; R5 holds the difference between ASCII ’@’ and ’‘’ (xFFE0)
; R6 is used as a temporary register

 .ORIG x3000 ; starting address is x3000

 LEA R0,HIST ; point R0 to the start of the histogram

 ; fill the histogram with zeroes
 AND R6,R6,#0 ; put a zero into R6
 LD R1,NUM_BINS ; initialize loop count to 27
 ADD R2,R0,#0 ; copy start of histogram into R2

 ; loop to fill histogram starts here
HFLOOP STR R6,R2,#0 ; write a zero into histogram
 ADD R2,R2,#1 ; point to next histogram entry
 ADD R1,R1,#-1 ; decrement loop count
 BRp HFLOOP ; continue until loop count reaches zero

 ; initialize R1, R3, R4, and R5 from memory
 LD R3,NEG_AT ; R3 holds additive inverse of ASCII ’@’
 LD R4,AT_MIN_Z ; R4 holds difference between ASCII ’@’ and ’Z’
 LD R5,AT_MIN_BQ ; R5 holds difference between ASCII ’@’ and ’‘’
 LD R1,STR_START ; point R1 to start of string

 ; the counting loop starts here
COUNTLOOP
 LDR R2,R1,#0 ; read the next character from the string
 BRz DONE ; found the end of the string

 ADD R2,R2,R3 ; subtract ’@’ from the character
 BRp AT_LEAST_A ; branch if > ’@’, i.e., >= ’A’
NON_ALPHA
 LDR R6,R0,#0 ; load the non-alpha count
 ADD R6,R6,#1 ; add one to it
 STR R6,R0,#0 ; store the new non-alpha count
 BRnzp GET_NEXT ; branch to end of conditional structure
AT_LEAST_A
 ADD R6,R2,R4 ; compare with ’Z’
 BRp MORE_THAN_Z ; branch if > ’Z’

; note that we no longer need the current character
; so we can reuse R2 for the pointer to the correct
; histogram entry for incrementing
ALPHA ADD R2,R2,R0 ; point to correct histogram entry
 LDR R6,R2,#0 ; load the count
 ADD R6,R6,#1 ; add one to it
 STR R6,R2,#0 ; store the new count
 BRnzp GET_NEXT ; branch to end of conditional structure

; subtracting as below yields the original character minus ’‘’
MORE_THAN_Z
 ADD R2,R2,R5 ; subtract ’‘’ - ’@’ from the character
 BRnz NON_ALPHA ; if <= ’‘’, i.e., < ’a’, go increment non-alpha
 ADD R6,R2,R4 ; compare with ’z’
 BRnz ALPHA ; if <= ’z’, go increment alpha count
 BRnzp NON_ALPHA ; otherwise, go increment non-alpha

GET_NEXT
 ADD R1,R1,#1 ; point to next character in string
 BRnzp COUNTLOOP ; go to start of counting loop

DONE HALT ; done

; the data needed by the program
NUM_BINS .FILL #27 ; 27 loop iterations
NEG_AT .FILL xFFC0 ; the additive inverse of ASCII ’@’
AT_MIN_Z .FILL xFFE6 ; the difference between ASCII ’@’ and ’Z’
AT_MIN_BQ .FILL xFFE0 ; the difference between ASCII ’@’ and ’‘’
STR_START .FILL STRING ; string stored below for simplicity
HIST .BLKW #27 ; space to store the histogram

STRING .STRINGZ "This is a test of the counting frequency code. AbCd...WxYz."

 .END

38

09/30/05
16:53:03 1readnumsub.asm

; read two numbers using a subroutine and store them to memory

 .ORIG x3000 ; starting address is x3000

 JSR READNUM ; read two numbers and store them
 ST R0,NUM1
 JSR READNUM
 ST R0,NUM2
 HALT

; subroutine developed as an extension of the
; earlier binary code

; read a decimal number from the keyboard,
; convert it from ASCII to 2’s complement, and
; return it in R0. If any non-numeric character
; is pressed, or the number overflows, print an
; error message and start over.

; R0 holds the value of the last key pressed
; R1 holds the current value of the number being input
; R2 holds the additive inverse of ASCII ’0’ (0xFFD0)
; R3 is used as a temporary register

READNUM ; the subroutine to read a number

 ST R7,SAVE_R7 ; TRAP overwrites R7, so must save
 ST R3,SAVE_R3 ; callee saves register values
 ST R2,SAVE_R2
 ST R1,SAVE_R1

 LD R2,NEG_0 ; put the value -x30 in R2
 AND R1,R1,#0 ; clear the current value

READ_LOOP
 GETC ; read a character
 OUT ; echo it back to monitor
 ADD R3,R0,#-10 ; compare with ENTER
 BRz DONE ; if ENTER pressed, done

 ADD R0,R0,R2 ; subtract x30 from R0
 BRn BAD_KEY ; smaller than ’0’ means error
 ADD R3,R0,#-10 ; check if > ’9’
 BRzp BAD_KEY ; greater than ’9’ means error
 ADD R3,R1,R1 ; sequence of adds multiplies R1 by 10
 BRn OVERFLOW ; overflow, but not really necessary here
 ADD R3,R3,R3
 BRn OVERFLOW ; overflow, but not really necessary here
 ADD R1,R1,R3
 BRn OVERFLOW ; overflow
 ADD R1,R1,R1
 BRn OVERFLOW ; overflow
 ADD R1,R1,R0 ; finally, add in new digit
 BRn OVERFLOW ; overflow
 BRnzp READ_LOOP ; get another digit

DONE
 ADD R0,R1,#0 ; move R1 into R0
 LD R1,SAVE_R1 ; restore register values for caller
 LD R2,SAVE_R2
 LD R3,SAVE_R3
 LD R7,SAVE_R7

 RET ; return

; print error message: "non-digit pressed"
BAD_KEY
 LEA R0,BK_MSG ; point R0 to the start of the string
PRINT_ERR
 PUTS ; the trap that you’re not allowed to use in MP2
 AND R1,R1,#0 ; reset current value
 BRnzp READ_LOOP ; try reading again

; print error message: "overflow"
OVERFLOW
 LEA R0,OF_MSG ; point R0 to the start of the string
 BRnzp PRINT_ERR

SAVE_R1 .BLKW 1 ; storage for saved register values
SAVE_R2 .BLKW 1
SAVE_R3 .BLKW 1
SAVE_R7 .BLKW 1
NEG_0 .FILL xFFD0 ; the additive inverse of ASCII ’0’
NUM1 .BLKW 1 ; storage for the results
NUM2 .BLKW 1

; error messages. The sequence \n means newline and is replaced
; with a single ASCII linefeed character (#10). Similar sequences
; include \r for #13 (carriage return), \t for #9 (TAB), \\ for
; backslash, etc.
BK_MSG .STRINGZ "\nnon-digit pressed\n"
OF_MSG .STRINGZ "\noverflow\n"

 .END

39

10/22/05
14:27:47 1dump_mem.c

/*
 * ECE190 Fall 2005
 *
 * Program name: dump_memory.c, a procedure to print the contents of memory
 *
 * Description: This function uses the LC-3 simulator’s read_memory function
 * to print the contents of memory from a starting address to
 * an ending address (both given as parameters).
 */

#include <stdio.h> /* Include C’s standard I/O header file. */

#include "lc3sim.h" /* Include the header file for the LC-3 simulator. */

/*
 * Function: dump_memory
 * Description: print a range of LC-3 memory in hexadecimal
 * Parameters: the starting and ending addresses; the range printed does
 * not include the ending address, but stops at the previous
 * location
 * Return Value: nothing
 */

void
dump_memory (int addr_s, int addr_e)
{
 int start; /* First address of line being printed. */
 int addr; /* Address being printed. */
 int index; /* Index of address being printed on current line (0-11). */

 /* Simplify code by not using modular arithmetic for address range.
 If given range wraps around 0, replace the ending address with
 one that is larger than the starting address, but equivalent
 modulo the size of the memory space. */
 if (addr_s >= addr_e)
 addr_e += 0x10000;

 /* Loop 12 addresses at a time. Starting addresses for lines must
 be multiples of 12. */
 for (start = (addr_s / 12) * 12; start < addr_e; start = start + 12) {

 /* Print an address at the start of each line. Since start
 is not necessarily in the valid range 0 to 0xFFFF, we first
 AND it with 0xFFFF. */
 printf ("%04X: ", start & 0xFFFF);

 /* This loop goes over all 12 addresses in the current line.
 The index variable runs from 0 to 11 (counts to 12), while
 the addr variable tracks the address currently being printed. */
 for (index = 0, addr = start; index < 12; index++, addr++) {

 /* We only print an address if it lies within the requested
 range. The value in memory is returned by the call to
 read_memory. If an address is not within the requested
 range, we print blank space for printing alignment purposes. */
 if (addr >= addr_s && addr < addr_e)
 printf ("%04X ", read_memory (addr & 0xFFFF));
 else
 printf (" ");
 }

 /* End the printed line. */
 puts ("");
 }
}

/* a sample of the output
 * 01F8: E002 F022 F025 000A
 * 0204: 0057 0065 006C 0063 006F 006D 0065 0020 0074 006F 0020 0074
 * 0210: 0068 0065 0020 004C 0043 002D 0033 0020 0073 0069 006D 0075
 * 021C: 006C 0061 0074 006F 0072
*/

40

12/06/05
13:31:56 1factorial.c

/*
 * ECE190 Fall 2005
 *
 * Program name: factorial.c, a factorial calculator
 *
 * Description: This program asks for an integer, then calculates and
 * prints the factorial of the number.
 */

/* The following two lines are preprocessor directives. */
#include <stdio.h> /* Include C’s standard I/O header file. */
#define STOP 1 /* Stop when we reach one. */

/*
 * Function: main
 * Description: prompt player for name and bet, then play game and announce
 * the outcome
 * Parameters: none (we’re ignoring the standard ones to main for now)
 * Return Value: 0, which by convention indicates success
 */

int
main ()
{
 /* variable declarations */
 int number; /* number given by user */
 int factorial; /* factorial of user’s number */

 /* Print a welcome message, followed by a blank line. */
 printf (">--- Welcome to the factorial calculator! ---<\n\n");

 /* Ask for and read the player’s bet into a variable. */
 printf ("What factorial shall I calculate for you today? ");
 scanf ("%d", &number);

 /* Calculate and report the answer (no overflow checking!). */
 for (factorial = number; number > STOP; number = number - 1)
 factorial = factorial * (number - 1);
 printf ("\nThe factorial is %d.\n", factorial);

 /* Program finished successfully. */
 return 0;
}

41

12/06/05
13:32:03 1translate.c

/*
 * ECE190 Fall 2005
 *
 * Program name: translate.c, a number translator
 *
 * Description: This program asks for a decimal number, then prints out
 * the absolute value of the number in hexadecimal form.
 */

#include <stdio.h> /* Include C’s standard I/O header file. */

int the_number; /* the number -- no good reason to be a global variable
 other than to serve the purpose of the example */

/*
 * Function: find_abs
 * Description: convert an integer to its absolute value
 * Parameters: the number to convert
 * Return Value: the absolute value of the number passed
 */

int
find_abs (int num)
{
 int abs_value;

 if (num >= 0) {
 /* Don’t change positive numbers. */
 abs_value = num;
 } else {
 /* Negative of negative number is the absolute value. */
 abs_value = -num;
 }

 return abs_value;
}

/*
 * Function: main
 * Description: prompt user for a decimal number, then print absolute value
 * in hexadecimal
 * Parameters: none (we’re ignoring the standard ones to main for now)
 * Return Value: 0, which by convention indicates success
 */

int
main ()
{
 /* no local variable declarations */

 /* Ask for and read the player’s bet into a variable. */
 printf ("Please enter a decimal number: ");
 scanf ("%d", &the_number);

 /* Find the absolute value. */
 the_number = find_abs (the_number);

 /* Print the answer. */
 printf ("The absolute value in hexadecimal is %x.\n", the_number);

 /* Program finished successfully. */
 return 0;
}

42

12/08/05
19:51:52 1insertion.c

/*
 * insertion sort -- performs an assertion sort on an array of integers
 * inputs: values -- a pointer to an array of integers
 * num_vals -- the number of values in the array
 * outputs: values -- returned in sorted order
 * returns: nothing, but changes array in place
 *
 * NOTE: does nothing if num_vals < 2
 *
 */

void
insertion_sort (int values[], int num_vals)
{
 int sorted; /* outer loop index; number of values sorted */
 int current; /* current value being placed into sorted subarray */
 int index; /* inner loop index for placing current value */

 /* Checks on input parameters should go here.
 What kinds of things might you check? */

 /* We start with a subarray of length 1 already sorted, so
 we need iterations to sort each larger subarray from length 2
 up to the full length of the array. */
 for (sorted = 2; sorted <= num_vals; sorted++) {

 /* Keep track of the value being moved into position. */
 current = values[sorted - 1];

 /* Move other array entries aside to make room for "current." */
 for (index = sorted - 1; index > 0; index--) {

 /* Check the order of "current" against the value before
 that at index. If it’s still smaller, move the value
 and continue the loop. Otherwise, we’ve found the place
 to which we must move "current." */
 if (current < values[index - 1])
 values[index] = values[index - 1];
 else
 break;
 }

 /* Store current in the right place. */
 values[index] = current;
 }

 /* No return value. */
}

43

ECE190: Introduction to Computing Systems Fall 2005
Lecture 23 10 November 2005

Input and Output in Unix and C

Basic Abstractions

Unix and C support a unified abstraction for input and output (I/O) known as file descriptors. Input and output from
everything ranging from devices to files to network connections uses the same abstraction. In particular, the operating
system maintains an array of structures with information about I/O channels, with each channel occupying one place in
this table. The array index at which a given channel appears can thus be used to locate the corresponding information
within the table, and a file descriptor is nothing more than an integer. Most operating systems limit the size of the table
to 1,024 entries by default, so descriptors are typically in the range 0 to 1,023. A diagram appears in Figure 1.

Notice that the first three entries in the array of I/O channels are occupied by the “standard” I/O channels for a program.
These channels are set up by the operating system before a program starts. If you execute a program by itself from
within a shell, input comes from the keyboard, and output (both normal and error output) goes to the monitor. However,
these defaults are easily overridden. In fact, you probably use a graphical window manager when working, in which
case the output from your programs does not go to the monitor, but instead to the window manager for display in the
window in which your program was started. In the original scheme for providing network services on Unix machines,
known as inetd (for “Internet Daemon”), the operating system started programs in response to incoming network
connections, replacing the standard input and output channels for the new program with the incoming connection.
Network services could thus be written and tested easily from any standard shell, then simply redirected to accept
input and send output across the network when they were ready.

The information in the I/O channel structure allows the operating system to differentiate between the different types
of I/O channels as necessary, and this information can be accessed and manipulated by a wide array of generic and
special-purpose system calls, but most of these are beyond the scope of our class. We will consider only a certain class
of fairly general-purpose calls in this discussion.

In particular, we focus on the calls that use streams. A stream is a logical array of bytes that flow from one place to
another through an I/O channel. Some types of I/O channels do not fit readily into the stream model; some network
protocols, for example, break data into packets; most devices have control/status registers as well as data registers,
and the access pattern necessary to control these devices is generally not the simple linear progression that the stream
provides. Channels that can fit into the stream model include input from a keyboard, output to a monitor, files on a
disk1, and certain types of network protocols.

The stream abstraction also provides support for buffering part of the stream in order to improve performance. Files
on disk are stored in blocks of four or eight kB, but can take tens of milliseconds to retrieve (tens of millions of
processor clock cycles). If this delay were incurred for each byte read from a file, a program would run quite slowly.
Even interacting with the operating system through a system call is relatively slow, however, often requiring tens or
hundreds of thousands of cycles or more. Buffering reduces the number of interactions with the operating system by
bringing data into the program in large blocks and using C library functions to handle most of the actual data transfer
for a stream.

Buffering also helps to simplify the implementation of certain expected behaviors. For example, reading from the
keyboard typically returns nothing until the user presses the RETURN/ENTER key. If this buffering is turned off,
every application must process BACKSPACE, since a keystroke delivered to the application cannot otherwise be taken
back. With the default buffering strategy, BACKSPACE is handled by keyboard-processing code, and application
programs see only lines that have been completed by pressing RETURN.

1The disk itself is a block device, but the filesystem serves to translate this abstraction into a stream for any given file.

44

channels opened by program

. .
 .

file descriptor 1023

file descriptor 0 standard input (usually from keyboard)
standard output (usually to monitor)
standard error channel (usually to monitor)

Figure 1: The array of I/O channel structures maintained for a program by the operating system. The array index for
a channel’s structure is used to identify the channel, and is passed around as a small integer known as a file descriptor.

In C, a stream is represented by a pointer to a structure containing information about the kind of buffering desired as
well as the file descriptor to be used by the stream. The structure is written FILE (all capitals), and is allocated by
library code, allowing a program to simply declare pointers to these structures in order to manipulate streams. For
example:

FILE* my_file;

declares a variable to refer to a stream.

Default and New Streams

The three default file descriptors created by the operating system are also associated with streams before a program
begins to execute. The input stream is named stdin, the output stream stdout, and the error stream stderr. Like
the file descriptors, stdin can only be read, not written, while stdout and stderr can only be written, not read.

Other streams can be created with several functions, the simplest of which are those used to access the files stored on
disk. As you should already be aware, Unix uses a hierarchical file system in which the names of files can consist of
sequence of directory names followed by a name for the file within its local directory.2 Directories correspond exactly
to the folders used by graphical file system browsers. The file names used within a program are the same as those
used within a Unix shell (a shell is just a program, after all); also like a shell, each program has a notion of a current
directory, so files with no directory names in front of them refer to those files in the directory in which the program
was started (assuming that the program has not changed its current directory).

The function below opens a file:

FILE* fopen (const char* file_name, const char* mode);

The first argument is a string containing the name of the file. The second argument is a string specifying what types
of operations are to be performed on the new stream. The function returns NULL if the open fails, and the perror
function can be called to print a human-readable error message in this case, such as “file not found” or “file not
readable.” If the file is opened successfully, the function returns a new stream, which should eventually be closed with
fclose, as described below.

The mode consists of a letter followed by an optional plus sign. If the plus sign is included, the file is opened for both
reading and writing. If the plus sign is not included, the file is opened for either reading or writing (depending on the
letter, as we discuss shortly), but not both. The letter “r” is used to open an existing file; an error is returned if the file
does not exist, and the file is opened for reading if no plus sign is included in the mode. The letter “w” creates a new
file for writing, first deleting an existing file of the given name if it exists, and allowing only writing if no plus sign is
included in the mode string. Finally, the letter “a” is used to write to the end of an existing file; in this case, if no file
exists yet, a new one is created. With the append option, the default mode is writing, and writing begins at the end of
the file.

2It may interest you to know that Unix “files” can actually be other channels in disguise, including everything from devices to network connec-
tions to channels to existing programs.

45

Finally, the letter “b” can optionally be included after the first letter (or the plus sign) with any mode, but has no
effect. On some older systems, the “b” signified that binary data were being stored in the file, and that certain standard
translations on ASCII text should not be performed to avoid corrupting the binary data. However, these translations
are for the most part obsolete, and are never performed on Unix platforms.

When a program is done using a stream, it should close the stream to free up the I/O channel resource, of which a
limited number are available for each program. For this purpose, use the following function:

int fclose (FILE* stream);

This function takes a stream and attempts to close it. If no errors occurred in accesses to the stream, the function
returns 0. If an error occurred, it returns EOF (-1).

All streams are closed when a program finishes execution, but it is a bad habit to rely on program termination rather
than using the fclose function. While you are unlikely to see any difference in this class, consider the impact of not
closing network connections in a web server: after the first 1,021 connections, the server begins to drop all requests,
as it has no free I/O channels.

Character by Character I/O

Our description of I/O functions now parallels the textbook, but we will cover a few more functions than are described
in the text. We will also differentiate between the functions that operate on any stream and the shortcut functions that
operate on stdin and stdout.

The functions below support reading and writing single characters to streams:

int fgetc (FILE* stream); /* read one character (a function) */
int getc (FILE* stream); /* read one character (a macro) */
int fputc (int c, FILE* stream); /* write one character (a function) */
int putc (int c, FILE* stream); /* write one character (a macro) */

The first two functions return the ASCII character read from the stream (converted into an integer), or EOF (-1) if the
read attempt failed. These calls by default block until input is available. That is, a user’s not having typed a character
yet does not cause the call to fail. Instead, the operating system puts the program to sleep until a character is typed.
Recall that the same thing occurs in the LC-3 system calls, which wait for a character to be available rather than
returning a failure indicator. Failure thus indicates conditions such as reaching the end of an input file.

The difference between fgetc and getc is that the first is a function and creates a function call in the assembly code
generated by a compiler, while the second is a preprocessor macro-operation that copies the necessary code in place
of the call before compilation. In older machines, these functions allowed a tradeoff between superior performance
(getc) and reduced program size (fgetc). In more modern machines, you’re probably better off using fgetc.

The fputc and putc functions write a single character (specified by the first argument) to a stream. Although an
integer is passed, only a single unsigned character is actually written. These functions both return the value written if
successful, or EOF (-1) on failure.

Shortcut functions, both based the macro version of the functions above, are available for reading and writing single
characters to stdin and stdout. These functions are declared as follows:

int getchar (void); /* read one character from stdin (a macro) */
int putchar (int c); /* write one character to stdout (a macro) */

The return values and argument are the same as for the corresponding previous functions, but the values of the stream
parameters are implicit in each case.

46

Reading and Writing Lines

For text files, it is usually most convenient to work with a line at a time, reading each line into an array of characters
and treating it as a string, or writing each line into an array of characters before sending it off to the file. The two
functions used for these purposes with streams are:

char* fgets (char* s, int n, FILE* stream); /* read one line */
int fputs (const char* s, FILE* stream); /* write a string */

The fgets function reads one line of text from a stream into the array of characters given by its first argument. The
second argument specifies the size of the array, and fgets also stops reading if it runs out of room. The function
always appends an ASCII NUL character to terminate the string, so it reads at most n-1 characters from the stream. If
a full line is read, the linefeed (LF, or “\n” in C) character is also written into the specified array of characters. The
function returns its first argument when successful, and NULL when no further data are available from the stream (or
some other error occurs).

The fputs function writes a string to a stream. No additional characters are sent, so the string must include a linefeed
character at the end if it is to appear as a line in a text file. The function returns the number of characters written or
EOF on failure.

Shortcut functions are available for both of these functions, but the shortcut for reading a line does not allow the caller
to specify the length of the array, and thus poses a security hazard. You should never use the gets function! The
majority of network attacks use strategies based on exactly this type of function, so you should simply never use it.
The shortcut function used to write a string to stdout is declared as:

int puts (char* s); /* write one line to stdout */

This function differs from fputs not only in implicitly writing to stdout, but also in that it also writes a linefeed
character to stdout after writing the string passed. A string meant to become a single line of output must therefore
NOT include a linefeed character at the end. The return value meanings are the same as for fputs.

Formatted I/O

You have already seen the scanf and printf functions used to translate between the ASCII text representing
human-readable text and the binary forms understood by a computer. These two functions are simply the shortcut
forms of the more general functions for reading and writing formatted data to streams:

int fscanf (FILE* stream, const char* fmt, ...);
int fprintf (FILE* stream, const char* fmt, ...);

The only difference between these functions and those already familiar to you is the need to include the stream as the
first argument. With scanf, the stdin stream is used implicitly, while printf implicitly writes to stdout. Note
that any information that should instead be delivered to stderr must use the more general form.

A third form of these functions is also useful, particularly in combination with the functions described in the previous
section for reading lines and writing strings to streams:

int sscanf (const char* s, const char* fmt, ...);
int sprintf (char* s, const char* fmt, ...);

These functions read and write formatted data to strings (arrays of characters). Note that the printing function does not
allow the caller to specify the size of the array, and can thus be attacked in certain cases. Be careful to allocate enough
space for a printed string; you may prefer to use the snprintf function instead, but I’m not sure that it is required
by the ANSI standard, thus you may need to write this function yourself for fully portable code.

47

Binary I/O

The last set of functions that we cover allow you to send binary data, such as the contents of an array, directly to and
from a stream. While Unix does not perform any translations on bytes, none of the preceding functions allow you
to transfer arbitrary sequences of bytes, a fact often overlooked by novice programmers. Pretending that an array of
integers is a string does not generally work, for example, as any zero byte in the array ends the “string.”

Before describing the functions, we need to explain some possibly new types. To reflect growth in file and memory
sizes, ANSI C actually uses a separate type to specify sizes in bytes, allowing this type to grow (to 64 bits, for example)
without necessarily growing the size of an integer. This type is called size_t, but you can think of it as unsigned
32-bit integer, and on most systems it is just that.

A second type, a pointer to a null type (void*), is used to allow automatic conversions to and from any other pointer
type. In particular, if the type of a parameter to a function is void*, any pointer type can be passed without causing
the compiler to repond with warnings or errors

The functions are declared as follows:

size_t fread (void* ptr, size_t size, size_t n_items, FILE* stream);
size_t fwrite (const void* ptr, size_t size, size_t n_items, FILE* stream);

The list of arguments to both functions is essentially the same. The first argument is a pointer to the memory to be filled
with bytes from the stream (in the case of fread) or from which bytes should be written to the stream (in the case of
fwrite). The second argument specifies the size of items to be read or written, typically using the sizeof() built-
in function, which is evaluated at compile time to the size of a type (or variable’s type) in bytes. The third argument
specifies how many such items should be read or written, and the last argument gives the stream. Both functions return
the number of items (NOT the number of bytes) read or written to the stream. Typically, a return value equal to the
third argument indicates that the call was completely successful, but partial success or total failure is also possible,
such as when a disk fills up or a user exceeds a disk quota.

No shortcut functions are available, as binary data are not normally delivered by or to human users.

48

12/06/05
13:32:09 1line_sort.c

/*
 * ECE190 Fall 2005
 *
 * Program name: line_sort.c, a sorting program
 *
 * Description: This program alphabetically sorts lines from stdin.
 * Lines are stored using dynamically allocated memory.
 */

#include <stdio.h> /* Include C’s standard I/O header file. */
#include <string.h> /* Include C’s string library. */

static const int max_num_lines = 5000; /* limit on number of lines */
static const int max_line_len = 500; /* limit on line length */

/* My favorite exit condition definitions. */
enum {
 EXIT_SUCCEED = 0,
 EXIT_FAIL = 1,
 EXIT_BAD_ARGS = 2,
 EXIT_PANIC = 3
};

/* function declarations */

/* read lines from stdin into an array; returns number of lines read */
static int read_lines (unsigned char* lines[], int max_lines);

/* sort strings in an array alphabetically using insertion sort */
static void sort_lines (unsigned char* lines[], int n_lines);

/* print an array of strings in order to stdout */
static void print_lines (unsigned char* const lines[], int n_lines);

/*
 * Function: main
 * Description: read stdin one line at a time, copying the lines
 * into dynamically allocated memory, then sort and
 * print the lines
 * Parameters: argc -- the number of arguments, including the executable name
 * argv -- an array of strings containing each argument
 * argc must equal 1; no other arguments are allowed
 * Return Value: EXIT_SUCCEED for success
 * EXIT_BAD_ARGS if the wrong number of arguments are given
 */

int
main (int argc, char* argv[])
{
 unsigned char* lines[max_num_lines]; /* array of lines */
 int num_lines; /* number of lines */

 /* Program must receive exactly one argument. */
 if (argc != 1) {
 /* Print an error message. argv[0] is the executable name. */
 fprintf (stderr, "syntax: %s\n", argv[0]);
 return EXIT_BAD_ARGS;
 }

 /* Read, sort, and print lines from stdin. */
 num_lines = read_lines (lines, max_num_lines);
 sort_lines (lines, num_lines);
 print_lines (lines, num_lines);

 /* Program finished successfully. */
 return EXIT_SUCCEED;
}

/*
 * read_lines -- reads lines from stdin into an array
 * inputs: lines -- an (empty) array of strings
 * max_lines -- the size of the array
 * outputs: nothing
 * returns: number of lines read
 */

static int
read_lines (unsigned char* lines[], int max_lines)
{
 unsigned char buf[max_line_len + 1]; /* holds current line */
 int num_lines; /* number of lines */

 /* Initialize the line count. */
 num_lines = 0;

 /* Read lines until we find the end of the input. */
 while (fgets (buf, max_line_len + 1, stdin) != NULL) {

 /* Are more lines available than we can read? If so, print
 a warning message and stop reading. */
 if (num_lines == max_lines) {
 fprintf (stderr, "WARNING: Cannot sort more than %d lines.\n",
 max_lines);
 break;
 }

 /* Make duplicate copy of line just read in heap memory, then
 store pointer to new copy in lines array. */
 lines[num_lines++] = strdup (buf);
 }

 /* Return number of lines read to caller. */
 return num_lines;
}

/*
 * sort_lines -- performs an insertion sort on an array of integers
 * inputs: lines -- an array of strings
 * n_lines -- the number of lines in the array
 * outputs: lines -- returned in sorted order
 * returns: nothing, but changes array in place
 *
 * NOTE: does nothing if n_lines < 2
 *
 */

static void
sort_lines (unsigned char* lines[], int n_lines)
{
 int sorted; /* outer loop index; number of lines sorted */
 char* current; /* current line being placed into sorted subarray */
 int index; /* inner loop index for placing current line */

 /* We start with a subarray of length 1 already sorted, so
 we need iterations to sort each larger subarray from length 2
 up to the full length of the array. */

49

12/06/05
13:32:09 2line_sort.c

 for (sorted = 2; sorted <= n_lines; sorted++) {

 /* Keep track of the line being moved into position. */
 current = lines[sorted - 1];

 /* Move other array entries aside to make room for "current." */
 for (index = sorted - 1; index > 0; index--) {

 /* Check the order of "current" against the line before
 that at index. If it’s still smaller, move the line
 and continue the loop. Otherwise, we’ve found the place
 to which we must move "current." */
 if (strcmp (current, lines[index - 1]) < 0)
 lines[index] = lines[index - 1];
 else
 break;
 }

 /* Store current in the right place. */
 lines[index] = current;
 }

 /* No return value. */
}

/*
 * print_lines -- print an array of strings (lines)
 * inputs: lines -- an array of strings
 * n_lines -- the number of lines in the array
 * outputs: nothing
 * returns: nothing, but prints all lines in order to stdout
 */

static void
print_lines (unsigned char* const lines[], int n_lines)
{
 int index; /* loop index for printing */

 /* Print all lines in order. */
 for (index = 0; index < n_lines; index++)
 fputs (lines[index], stdout);

 /* No return value. */
}

50

12/06/05
13:32:16 1unique_count.c

/*
 * ECE190 Fall 2005
 *
 * Program name: unique_count.c, a unique line counting program
 *
 * Description: This program reads lines from stdin, merges identical
 * lines, and prints each line with a number prefix
 * indicating how many times the same line appeared
 * consecutively in the input.
 */

#include <stdio.h> /* Include C’s standard I/O header file. */

static const int max_word_len = 500; /* limit on word length */

/* My favorite exit condition definitions. */
enum {
 EXIT_SUCCEED = 0,
 EXIT_FAIL = 1,
 EXIT_BAD_ARGS = 2,
 EXIT_PANIC = 3
};

/*
 * Function: main
 * Description: read lines from stdin, merge duplicate consecutive lines,
 * and print lines prefixed by their multiplicities in the
 * input (consecutive counts only; appearance elsewhere is
 * ignored)
 * Parameters: argc -- the number of arguments, including the executable name
 * argv -- an array of strings containing each argument
 * argc must equal 1; no additional argument are allowed
 * Return Value: EXIT_SUCCEED for success
 * EXIT_FAIL if the input contains no lines
 * EXIT_BAD_ARGS if the wrong number of arguments are given
 */

int
main (int argc, char* argv[])
{
 unsigned char buf1[max_word_len + 1]; /* a line */
 unsigned char buf2[max_word_len + 1]; /* a second line */
 unsigned char* last_line; /* points to last line */
 unsigned char* cur_line; /* points to current line */
 unsigned char* tmp; /* a temporary for swapping */
 int count; /* multiplicity of last_line */

 /* Program must receive exactly one argument. */
 if (argc != 1) {
 /* Print an error message. argv[0] is the executable name. */
 fprintf (stderr, "syntax: %s\n", argv[0]);
 return EXIT_BAD_ARGS;
 }

 /* Read the first line. */
 if (fgets (buf1, max_word_len + 1, stdin) == NULL) {
 fputs ("Could not read any lines!\n", stderr);
 return EXIT_FAIL;
 }

 /* Initialize the double buffering scheme based on the first line’s
 residing in buf1. */
 last_line = buf1;
 count = 1;
 cur_line = buf2;

 /* Read lines until we find the end of the input. */
 while (fgets (cur_line, max_word_len + 1, stdin) != NULL) {

 /* Check for duplication. */
 if (strcmp (cur_line, last_line) == 0) {
 count++;
 continue;
 }

 /* Print last line (it already includes a carriage return). */
 printf ("%5d %s", count, last_line);

 /* Switch buffering for lines, and reset count. */
 tmp = cur_line;
 cur_line = last_line;
 last_line = tmp;
 count = 1;
 }

 /* Print final line (it already includes a carriage return). */
 printf ("%5d %s", count, last_line);

 /* Program finished successfully. */
 return EXIT_SUCCEED;
}

51

12/06/05
13:32:22 1word_split.c

/*
 * ECE190 Fall 2005
 *
 * Program name: word_split.c, an English word splitting program
 *
 * Description: This program splits its input into a list of lower-case
 * words, with one word per line. Words are defined as
 * contiguous sequences of alphabetic characters, hyphens,
 * and apostrophes. Words must begin with an alphabetic
 * character. All other characters are discarded.
 */

#include <stdio.h> /* Include C’s standard I/O header file. */

static const int max_word_len = 500; /* limit on word length */

/* My favorite exit condition definitions. */
enum {
 EXIT_SUCCEED = 0,
 EXIT_FAIL = 1,
 EXIT_BAD_ARGS = 2,
 EXIT_PANIC = 3
};

/*
 * Function: main
 * Description: read a file one character at a time, break input into
 * lower-case words (alphabetic, hyphens, or apostrophes),
 * and print words found on separate lines without eliminating
 * duplicates. Hyphens and apostrophes are not allowed to
 * start words.
 * Parameters: argc -- the number of arguments, including the executable name
 * argv -- an array of strings containing each argument
 * argc must equal 2, and the second argument is the file name
 * from which words are read
 * Return Value: EXIT_SUCCEED for success
 * EXIT_FAIL if file cannot be opened
 * EXIT_BAD_ARGS if the wrong number of arguments are given
 */

int
main (int argc, char* argv[])
{
 FILE* in_file; /* input file pointer */
 unsigned char buf[max_word_len + 1]; /* holds current word */
 unsigned char* write; /* end of current word */
 int word_len; /* length of current word */
 int a_char; /* last character read */

 /* Program must receive exactly two arguments. */
 if (argc != 2) {
 /* Print an error message. argv[0] is the executable name. */
 fprintf (stderr, "syntax: %s <file name>\n", argv[0]);
 return EXIT_BAD_ARGS;
 }

 /* Open the file for reading. */
 in_file = fopen (argv[1], "r");
 if (in_file == NULL) {
 /* fopen failed: print an error message to stderr. */
 perror ("open file");
 return EXIT_FAIL;
 }

 /* Initialize the word writing variable to point to the start of
 the word buffer. */
 write = buf;
 word_len = 0;

 /* Read characters until we find the end of the input. */
 while ((a_char = getc (in_file)) != EOF) {

 /* If necessary, change input character to lower case. */
 if (a_char >= ’A’ && a_char <= ’Z’)
 a_char = a_char - ’A’ + ’a’;

 /* Can character be part of a word? */
 if ((a_char >= ’a’ && a_char <= ’z’) ||
 (word_len > 0 && (a_char == ’-’ || a_char == ’\’’))) {

 /* Write the character into our word buffer and increment
 the pointer and counter. */
 *write++ = a_char;
 word_len++;

 /* Do we still have room in the buffer? If so, read
 another character (skip to next loop iteration). */
 if (word_len < max_word_len)
 continue;
 } else {
 /* Invalid character read. Is there a word that needs
 to be written out? If not, skip to next character. */
 if (word_len == 0)
 continue;
 }

 /* Write out the current word, then reset the buffer pointer
 and character count. */
 *write = 0;
 puts (buf);
 write = buf;
 word_len = 0;
 }

 /* Any last words? */
 if (word_len > 0) {
 *write = 0;
 puts (buf);
 }

 /* Close the input file, ignoring any errors. */
 fclose (in_file);

 /* Program finished successfully. */
 return EXIT_SUCCEED;
}

52

12/06/05
13:32:35 1mem199.h

/* tab:8
 *
 * mem199.h - header file for ECE199SJP’s simple memory management package
 *
 * "Copyright (c) 2003 by Steven S. Lumetta."
 *
 * Permission to use, copy, modify, and distribute this software and its
 * documentation for any purpose, without fee, and without written agreement is
 * hereby granted, provided that the above copyright notice and the following
 * two paragraphs appear in all copies of this software.
 *
 * IN NO EVENT SHALL THE AUTHOR OR THE UNIVERSITY OF ILLINOIS BE LIABLE TO
 * ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
 * DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION,
 * EVEN IF THE AUTHOR AND/OR THE UNIVERSITY OF ILLINOIS HAS BEEN ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * THE AUTHOR AND THE UNIVERSITY OF ILLINOIS SPECIFICALLY DISCLAIM ANY
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
 * PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND NEITHER THE AUTHOR NOR
 * THE UNIVERSITY OF ILLINOIS HAS ANY OBLIGATION TO PROVIDE MAINTENANCE,
 * SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."
 *
 * Author: Steve Lumetta
 * Version: 1
 * Creation Date: 4 December 2003
 * Filename: mem199.h
 * History:
 * SL 1 4 December 2003
 * First written.
 */

#if !defined(_MEM199_H)
#define _MEM199_H

/*
 These constants define the limitations on memory allocation with
 the package. Nothing larger can be compiled. Note that the code for
 the package must be recompiled if these numbers are changed.
*/

#define MEM199_MAX_ALLOC_LOG 20
#define MEM199_MAX_ALLOC (1UL << MEM199_MAX_ALLOC_LOG)

/*
 mem199_allocate

 Allocates n_bytes and returns a pointer to the new memory. If no memory
 is available, or if 0 bytes are requested, returns NULL. Note that the
 new memory may contain arbitrary values.
*/
void* mem199_allocate (unsigned n_bytes);

/*
 mem199_allocate_and_zero

 Allocates n_bytes, fills the new memory with zeroes, and returns a
 pointer to the new memory. If no memory is available, or if 0 bytes
 are requested, returns NULL.
*/
void* mem199_allocate_and_zero (unsigned n_bytes);

/*
 mem199_reallocate

 Attempts to change the size of a previously allocated block of memory.
 The parameters passed are a pointer to the pointer to the old block
 (possibly NULL, if no previous block existed) and the new desired size.
 If possible, a new block of the appropriate size is allocated, any
 data in the old block are copied into the new block, the old block
 is freed, the pointer is changed, and 0 is returned. If the allocation
 of a new block fails, the pointer to the old block is not changed,
 the old block (if it existed) is not freed, and -1 is returned.
*/
int mem199_reallocate (void** ptr_to_ptr, unsigned n_bytes);

/*
 mem199_free

 Returns control of a block of memory to the memory management system.
 The block should not be accessed after a call to mem199_free. The
 block may be returned by a successive call to any of the allocation
 functions.
*/
void mem199_free (void* ptr);

#endif /* !defined(_MEM199_H) */

53

12/06/05
13:32:28 1mem199.c

/* tab:8
 *
 * mem199.c - a simple memory management package for ECE199SJP
 *
 * "Copyright (c) 2003 by Steven S. Lumetta."
 *
 * Permission to use, copy, modify, and distribute this software and its
 * documentation for any purpose, without fee, and without written agreement is
 * hereby granted, provided that the above copyright notice and the following
 * two paragraphs appear in all copies of this software.
 *
 * IN NO EVENT SHALL THE AUTHOR OR THE UNIVERSITY OF ILLINOIS BE LIABLE TO
 * ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
 * DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION,
 * EVEN IF THE AUTHOR AND/OR THE UNIVERSITY OF ILLINOIS HAS BEEN ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * THE AUTHOR AND THE UNIVERSITY OF ILLINOIS SPECIFICALLY DISCLAIM ANY
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
 * PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND NEITHER THE AUTHOR NOR
 * THE UNIVERSITY OF ILLINOIS HAS ANY OBLIGATION TO PROVIDE MAINTENANCE,
 * SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."
 *
 * Author: Steve Lumetta
 * Version: 1
 * Creation Date: 4 December 2003
 * Filename: mem199.c
 * History:
 * SL 1 4 December 2003
 * First written.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "mem199.h"

/*
 This memory manager allocates blocks in sizes of powers of two,
 allowing reasonably efficient reuse of freed blocks. As with almost
 all memory managers, management information is held in a header
 preceding the region allocated to the caller. For this implementation,
 we need only the block size in the header, which allows free to
 place the block into the correct bin. We actually store the index
 of the bin in our array of bins, which is equivalent to the log_2 of
 the block size.
*/

/*
 The memory block header structure, stored at the front of each block
 of memory. It contains the size of the block and a pointer allowing
 us to chain free blocks together into a list.
*/
typedef struct mem_block_t mem_block_t;
struct mem_block_t {
 unsigned size;
 mem_block_t* next;
};

/* static functions (not visible outside of this file) */

/*
 mem199_init

 Initializes the memory management package. Called before any blocks
 are allocated.
*/
static void mem199_init ();

/*
 log2_ceil

 Calculates the logarithm base 2 of a number, rounded up to the
 nearest integer. Useful in determining what size block to allocate
 for a given memory request, as allocations are always made in powers
 of two.
*/
static int log2_ceil (unsigned value);

/* file scoped variables */

static char* free_bytes; /* unallocated memory */
static int n_free_bytes; /* unallocated bytes */
static mem_block_t* mem_bin[MEM199_MAX_ALLOC_LOG+1]; /* free block lists */
static int init_done = 0; /* package initialized? */

/*
 mem199_allocate -- allocate a new block of n_bytes
 INPUTS -- minimum number of bytes in block available to caller
 OUTPUTS -- none
 RETURN VALUE -- pointer to new block (past header), or
 NULL if no more memory available
*/

void*
mem199_allocate (unsigned n_bytes)
{
 unsigned block_size; /* minimum size of allocated block */
 int bin; /* bin that holds blocks of appropriate size */
 mem_block_t* new_block; /* the new block */

 /* On first call, initialize static data for the memory manager. */
 if (!init_done)
 mem199_init ();

 /* Add room for a header to find the necessary size. */
 block_size = n_bytes + sizeof (*new_block);

 /* Unsigned, so no need to check for requests < 0. */
 if (n_bytes == 0 || block_size > MEM199_MAX_ALLOC)
 return NULL;

 /* Find the bin number. */
 bin = log2_ceil (block_size);

 /* Do we have a block sitting around? */
 if (mem_bin[bin] != NULL) {

 /*
 If so, remove the first one from the bin
 (a linked list of blocks).
 */

54

12/06/05
13:32:28 2mem199.c

 new_block = mem_bin[bin];
 mem_bin[bin] = new_block->next;

 } else {
 /* No spare block, so try to allocate a new one. */

 /* Find the total block size. */
 n_bytes = (1UL << bin);

 /* Not enough space left in heap? Return failure. */
 if (n_free_bytes < n_bytes)
 return NULL;

 /* Allocate the block from the front of the heap. */
 new_block = (mem_block_t*)free_bytes;
 free_bytes += n_bytes;
 n_free_bytes -= n_bytes;

 /* Mark the block’s size in the header area. */
 new_block->size = n_bytes;
 }

 /* Return a pointer to the part AFTER the header. */
 return (new_block + 1);
}

/*
 mem199_allocate_and_zero -- allocate a new block of n_bytes and fill
 it with zeroes
 INPUTS -- minimum number of bytes in block available to caller
 OUTPUTS -- none
 RETURN VALUE -- pointer to new block (past header), or
 NULL if no more memory available
*/

void*
mem199_allocate_and_zero (unsigned n_bytes)
{
 void* new_block;

 /* First allocate a block. If the attempt fails, so does this
 function. */
 new_block = mem199_allocate (n_bytes);
 if (new_block == NULL)
 return NULL;

 /* Set the bytes to zero. Note that the pointer returned to us
 points past the memory header, so we only zero the data to be
 used by the caller, not the memory management information. */
 memset (new_block, 0, n_bytes);

 /* Return the new block. */
 return new_block;
}

/*
 mem199_reallocate -- change the size of a block of memory, allocating
 a new block if necessary
 INPUTS -- ptr_to_ptr, a pointer to the pointer to the old block
 n_bytes, the minimum number of bytes in reallocated block
 available to caller
 OUTPUTS -- *ptr_to_ptr, a pointer to the new block (on success only)
 RETURN VALUE -- 0 for success, in which case *ptr_to_ptr may have changed

 -1 for failure, in which case *ptr_to_ptr does not change
 SIDE EFFECTS -- if a new block is necessary, and is created successfully,
 data from the old block are copied into it, and the
 old block is freed
*/

int
mem199_reallocate (void** ptr_to_ptr, unsigned n_bytes)
{
 mem_block_t* old_block; /* pointer to old block of data */
 mem_block_t* new_block; /* pointer to reallocated block */

 /*
 Calling with ptr_to_ptr equal to NULL should lead to an
 assertion (deliberate crash), but we’ll just return failure.
 */
 if (ptr_to_ptr == NULL)
 return -1;

 /* If the pointer is valid, read the old block pointer. */
 old_block = *ptr_to_ptr;

 /*
 If the new size (including the header) still fits in the
 current block, nothing need be done to succeed. Note the
 method used to access the header, which sits before the pointer
 returned by the earlier allocation call.
 */
 if (old_block != NULL &&
 n_bytes + sizeof (*old_block) <= old_block[-1].size)
 return 0;

 /*
 Try to create a new block. Return failure if necessary
 (without changing the old block pointer).
 */
 new_block = mem199_allocate (n_bytes);
 if (new_block == NULL)
 return -1;

 /*
 New block exists, so write it over the old pointer; we still
 have a copy in old_block for the rest of this function.
 */
 *ptr_to_ptr = new_block;

 /*
 The data block must have grown, so copy all old bytes if an old
 block existed, then free the old block. Note that the header
 bytes are not included, since old_block points past them, and
 the new block has its own header.
 */
 if (old_block != NULL) {
 memcpy (new_block, old_block,
 old_block[-1].size - sizeof (*old_block));
 mem199_free (old_block);
 }

 /* All done. Return success. */
 return 0;
}

/*
 mem199_free -- free a block of memory

55

12/06/05
13:32:28 3mem199.c

 INPUTS -- a pointer to the old block
 OUTPUTS -- none
 RETURN VALUE -- none
 SIDE EFFECTS -- the block now belongs to the memory management package,
 which may reuse it later
*/

void
mem199_free (void* ptr)
{
 mem_block_t* mem_block = ptr; /* memory block pointer */
 int bin; /* bin number for old block */

 /* Check for free of NULL pointer. Again, should probably have
 assertion rather than simple return. */
 if (ptr == NULL)
 return;

 /* Put the block into the appropriate bin. */
 bin = log2_ceil (mem_block[-1].size);
 mem_block[-1].next = mem_bin[bin];
 mem_bin[bin] = &mem_block[-1];
}

/*
 mem199_init -- initialize memory management data
 INPUTS -- none
 OUTPUTS -- none
 RETURN VALUE -- none
 SIDE EFFECTS -- initializes static data and sets up pointers to
 unallocated region of memory (a simulated heap)
*/

static void
mem199_init ()
{
 /* All bins are empty (set pointers to NULL). */
 memset (mem_bin, 0, sizeof (mem_bin));

 /* Allocate a "heap" for us to manage. */
 n_free_bytes = 16 * MEM199_MAX_ALLOC;
 free_bytes = malloc (n_free_bytes);
 if (free_bytes == NULL) {
 perror ("initialize (malloc) mem199 package");
 exit (3);
 }

 /* Init has run; make a note of it. */
 init_done = 1;
}

/*
 log2_ceil -- calculate the logarithm base 2 of the value passed, rounded
 up to the nearest integer
 INPUTS -- an unsigned value on which to operate
 OUTPUTS -- none
 RETURN VALUE -- ceil (log_2 (value)), as an integer, or
 -1 if value == 0
*/

static int
log2_ceil (unsigned value)
{

 int ret_val;

 /*
 If value is a power of 2, we start counting at -1, otherwise,
 we start counting at 0 (to round up).
 */
 if ((value & (value - 1)) == 0)
 ret_val = -1;
 else
 ret_val = 0;

 /*
 Shift the value to the right until it disappears. Counting with
 a loop in this manner is not the fastest possible method, but it
 is the simplest.
 */
 while (value > 0) {
 ret_val++;
 value >>= 1;
 }

 return ret_val;
}

56

Week 14 Introduction to Computing Systems ECE 190

14.1 Object-oriented programming

In C, it is only possible to hide code by putting it in a single file (file-scoped) and making
the functions static. However, it is often nice to be able to create “code modules,” where
the only way internal data can be modified is through specific functions, ormethods.

C++ supports this idea of “code modules” withclasses. A classis a structure plus addi-
tional information that includes information hiding and scoping support, function proto-
types, and static variables. C++ allows the class to be separated into visible (public) and
private portions.

Visible (public) Private
Existence of structures Data within structures

Interface functions Internal (implementation) functions
Initialization (constructor1)
Teardown code (destructor1)

Functions that operate on a singleinstance(one copy) of something are common when pro-
gramming. Let’s say we again have aplayer_t structure below that has some information
about one of the players in a game we are constructing.

struct player_t {
char* name; /* player login name */
char* password; /* cleartext password */
int num_played; /* number of games we have played */
int win_guesses [13];/* number of guesses it took to win */
double win_percent; /* percent of times we have won */

};

In C, we might declare a function that is called when the player wins the game. It will
updatenum_played, win_percent, and thewin_guesses array when called:

void player_win(player_t* p, int num_guesses);

In C, we would call this function the following way:

player_t player1; /* assume player already initialized */

/* some code that plays the game */

/* player1 wins the game after 5 guesses*/
player_win(&player1 , 5);

1Automatically called by the compiler.

University of Illinois at Urbana-Champaign

57

ECE 190 Introduction to Computing Systems Week 14

Let’s recreate the player with a C++ class:

class player_t
{

public:
void player_win(int num_guesses); /* player_t* argument

is implicit */
private:

char* name; /* player login name */
char* password; /* cleartext password */
int num_played; /* number of games we have played */
int win_guesses [13]; /* number of guesses it took to win */
double win_percent; /* percent of times we have won */

};

In C++ theplayer_t* argument is implicit when we call theplayer_win function. We have
written the following inside the class:

void player_win(int num_guesses); /* player_t* arg is implicit */

The function above is called amethod, which means that the first argument is implicit and
its type is a pointer to this class. A method operates on the object that calls it.

Let’s see how to use the C++ class:

player_t* p; /* pointer to a player class object 2 */

/* some code to play the game */

p->player_win (5); /* player wins after 5 guesses */

Now let’s write the definition forplayer_win:

int player_t::player_win(int num_guesses)
{

this ->win_guesses[this ->num_played] = num_guesses;
this ->win_percent = ((this ->win_percent * this ->num_played)+1)

/(this ->num_played +1);
this ->num_played++;

}

The player_t followed by two colons above means that this method is a member of the
player_t class. This notation is calledscoping, and you must provide the correct scoping
when writing C++ definitions. The “this” pointer above is an implicit pointer to the object
that called the method, in this case aplayer_t*. For example, in the above code we have

2This isn’t quite right because the memory has not been allocated for it and it hasn’t been initialized by
the constructor. For now assume that those things have been done.

University of Illinois at Urbana-Champaign

58

Week 14 Introduction to Computing Systems ECE 190

p->player_win(5); in which case “this” would be the same asp. Since it is somewhat
cumbersome to always write “this”, C++ allows you to leave it out inside the definition,
and the compiler will automatically fill it in. The definition forplayer_win then becomes:

int player_t::player_win(int num_guesses)
{

win_guesses[num_played] = num_guesses;
win_percent = ((win_percent * num_played)+1)/(num_played +1);
num_played++;

}

14.2 Constructor and Destructor

C++ allows one to write code that is run whenever a new object is created or destroyed. This
code is called theconstructoranddestructor, respectively. For example, we might want to
initialize all of the player structure values in ourplayer_t class, so we add a constructor
and destructor to our class3:

class player_t
{

public:
player_t(); /* constructor */
˜player_t(); /* destructor */
void player_win(int num_guesses); /* player_t* argument

is implicit */
private:

char* name; /* player login name */
char* password; /* cleartext password */
int num_played; /* number of games we have played */
int win_guesses [13]; /* number of guesses it took to win */
double win_percent; /* percent of times we have won */

};

3The C++ compiler will automatically create a constructor and destructor if you do not specify one.

University of Illinois at Urbana-Champaign

59

ECE 190 Introduction to Computing Systems Week 14

/* Constructor
* We initialize the values and also allocate dynamic
* memory for the name and password using the new operator (see
* description of new below)
*/

player_t::player_t()
{

num_played = 0;
for(int i=0; 13 > i; i++){

win_guesses[i] = 0;
}
win_percent = 0;

name = new char[10]; /* dynamic memory for 9 char string + NULL */
password = new char[10];

}

/* Destructor
* We need to deallocate the dynamic memory that was created in
* the constructor so we don’t have any memory leaks
*/

player_t::˜player_t()
{

delete[] name; /* free dynamic memory allocated in constructor */
delete[] password;

}

Now, whenever we create a newplayer_t object, the constructor will get called by the
compiler, and the object will be initialized. The initialization will zero out all of the fields
and allocate dynamic memory for thename andpassword strings. The destructor is then
called by the compiler when the object needs to be destroyed. The destructor will then free
the dynamic memory that was initially allocated by the constructor. For example, consider
the following function:

void play_round()
{

player_t player1; /* calls player_t constructor implicitly */
player_t player2; /* calls player_t constructor implicitly */

/* some code to play the game */
}

The play_round function declares two local variables:player1 andplayer2. The com-
piler inserts code to call theplayer_t constructor when each of these local variables is

University of Illinois at Urbana-Champaign

60

Week 14 Introduction to Computing Systems ECE 190

created at the start of the function. After the function has ended, the local variables are no
longer needed; before the function returns to the caller, the compiler inserts code to call the
player_t destructor on theplayer1 andplayer2 objects. Note that in this case the calls to
the constructor and destructor wereimplicit and taken care of by the compiler.

14.3 The New and Delete Operators

Rather than usingmalloc andfree, we can allocate dynamic memory using thenew and
delete operators. The operators also provide support for calling the object’sconstructor
and destructor. The new operator callsmalloc followed by the constructor; thedelete
operator calls the destructor followed byfree.

14.4 Data Inheritance

C++ also provides data inheritance. This can be useful when creating objects that share
information. We say that the data is inherited. Consider the illustration in Figure 14.1.

reference_t

author_list

year

next

title

publisher

address

ISBN

book_t paper_t

related_list

pages

month

editor

series_t

series_name

textbook_t

topic

student_level

article_t

journal

volume

number

spec_topic

conf_name

place

ISBN

conf_paper_t

Figure 14.1: Data Inheritance

University of Illinois at Urbana-Champaign

61

ECE 190 Introduction to Computing Systems Week 14

At the top of 14.1 we have areference_t, which includes anauthor_list, title, year,
and anext pointer to the nextreference_t. However, we also have books and papers,
for which we want to store more information. For a book, we want to have thepublisher,
address, andISBN. Furthermore, an academic paper should have different information such
as a list of related papers, the number of pages, and the month it was written. Likewise,
we have textbooks and series, which contain book and reference information in addition to
new textbook and series-specific information.

How can we make this abstraction work in C++? The answer is that classes in C++ can in-
herit other classes. As a result a class hierarchy is created withsuperclassesbeing “above”
a class andsubclassesbeing “below” the class. If we just created areference_t class only
the data in Figure 14.2 would be included. However, if we create aseries_t, it will be laid
out as shown in Figure 14.3.

reference_t

author_list

year

next

title

r

Figure 14.2: referencet layout

publisher

address

ISBN

series_name

editor

author_list

year

next

title

series_t
s

Figure 14.3: seriest layout

Suppose we create a functionvoid print_cite(); that is defined in thereference_t class.
What happens if we do the following:

series_t* s; /* assume memory has been allocated and initialized */
s->print_cite();

The above will work even though we are calling areference_t method on aseries_t
object. The reason is that conversion to superclass is automatic in C++. Notice hows

points to the same data as the pointerr to thereference_t object. When aseries_t object
callsprint_cite, theprint_cite function simply ignores all the data afternext.

University of Illinois at Urbana-Champaign

62

Week 14 Introduction to Computing Systems ECE 190

14.5 Thestatic keyword

Thestatic keyword means that the function is not a method and therefore is not associated
with an instance of a class. For example:

class reference_t
{

public:
static reference_t* find_author(const char* find);

private:
author_list* author_list;
char* title;
int year;
reference_t* next;

};

When callingfind_author, we do not want to call it on a specificreference_t object, but
rather want to search the list ofreference_t objects for a certain author.

On the other hand, the following function should be a method because it needs to operate
on a specific reference:

int has_author(const char* find);
r->has_author("Lumetta"); /* check object to see if Lumetta is the

author */

University of Illinois at Urbana-Champaign

63

ECE 190 Introduction to Computing Systems Week 14

14.6 Virtual functions (Functional Inheritance)

What if we are in the middle of creating our subclasses, but don’t know how many sub-
classes we are going to create or are in the middle of creating them? How can we write
a function to print all the information about each of our objects? The solution isvirtual
functions.

virtual void print_all_cites();

reference_t* r;
r->print_all_cites();

function_d

function b

function a

print_all_cites

book_t
function
pointers

book_t’s virtual
function table

...

...

function_d

function b

function a

print_all_cites

reference_t’s virtual
function table

virtual table pointer

reference_t data

book_t

book_t object

book_t data

virtual table pointer

reference_t data

book_t

book_t object

book_t data

reference_t
virtual table pointer

reference_t data

reference_t object

reference_t
virtual table pointer

reference_t data

reference_t object

Figure 14.4: Virtual Functions

Note that each class in Figure 14.4 has a virtual function table that contains pointers to func-
tions. One of the functions in thereference_t virtual function table isprint_all_cites.
Thebook_t virtual function table inherits thereference_t virtual functions. One thing we
can do is replace theprint_all_cites function pointer inbook_t’s virtual function table
with a pointer to another function. For example, we could replace
reference_t::print_all_cites in the book_t virtual function table on the right with a
function pointer to a new functionbook_t::print_all_cites. Now if we do

book_t* b;
b->print_all_cites();

University of Illinois at Urbana-Champaign

64

Week 14 Introduction to Computing Systems ECE 190

thebook_t::print_all_cites function will be called instead of the
reference_t::print_all_cites function. How exactly does this work? As can be seen
from Figure 14.4, each object has an implicit field inserted by the compiler that points to
its virtual function table. Forreference_t objects, the pointer refers to thereference_t
virtual function table, while forbook_t objects, the pointer refers to thebook_t virtual
function table. When thebook_t object calls theprint_all_cites function, the address
of the function is looked up by following the pointer from thebook_t object to the virtual
function table. From the virtual function table, we can find the pointer to the function we
want to invoke, which isprint_all_cites in this case.

class reference_t
{

public:
void print_reference_cites()
{

printf("Title: %s\n", title);
printf("Year: %d\n", year);

}
virtual void print_all_cites() /* (1) */
{

print_reference_cites ();
}

private:
author_list* author_list;
char* title;
int year;
reference_t* next;

};

class book_t : public reference_t
{

public:
virtual void print_all_cites(); /* (2) */
{

print_reference_cites (); /* inherited method from
reference_t class */

printf("Publisher: %s\n", publisher);
printf("ISBN: %d\n", ISBN);

}

private:
char* publisher; /* publisher name */
char* address; /* publisher’s address */
double ISBN; /* ISBN number */

};

University of Illinois at Urbana-Champaign

65

ECE 190 Introduction to Computing Systems Week 14

The code above defines thereference_t class with the virtual functionprint_all_cites.
Thebook_t class is a subclass (derived class) of thereference_t class, which is indicated
by ": public reference_t".4 These class definitions tell the compiler that the virtual
function table for thebook_t class should contain a function pointer to the
book_t::print_all_cites function rather than thereference_t::print_all_cites func-
tion. Looking at Figure 14.4, this means that thereference_t virtual function table on the
left will have a pointer to the function defined by(1) for print_all_cites, and thebook_t
virtual function table on the right will have a pointer to the function defined by(2) for
print_all_cites.

What will each print if we call it?

reference_t* r;
r->print_all_cites();

This will call the function defined by(1) and print the title and the year.

book_t* b;
b->print_all_cites();

This will call the function defined by(2) and print the title, year, publisher, and ISBN.

You may wonder why theprint_reference_cites method exists. The reason is that only
public members of a class are inherited, which means that thebook_t subclass does not
have direct access toauthor_list, title, year, andnext. However, since the
print_reference_cites method is public, thebook_t subclass does have access to this
method.5

4The public keyword precedingreference_t indicates that all of the public members of the
reference_t superclass will remain public in thebook_t subclass. You can also use private to indicate
that public members of thereference_t superclass should become private in thebook_t subclass.

5C++ also provides theprotected access specifier, which is the same asprivate, except that subclasses
have access toprotected members.

University of Illinois at Urbana-Champaign

66

Week 14 Introduction to Computing Systems ECE 190

14.7 C++ References

In C++ a reference is a pointer with implicit dereference. For example:

int val;
int& val_ref = val; /* declare a reference, which

implicitly assigns the address of val */
val_ref = 10; /* same as val = 10 */

Why is this used? It is often used inoperator overloading. Operator overloading lets us
change the way a certain operator (+ - / * ,etc.) behaves for a class. For example, if we
create a new class to represent a complex number calledcomplex_t, we might want to do
the following:

complex_t x, y, z;
z = x + y;

If we overload the addition operator (+), we can specify exactly how the class should be-
have when adding twocomplex_t objects.6 We would declare the overloaded function as
follows:

complex_t operator+(const complex_t& a, const complex_t& b);

The reference operator forces the compiler to pass in a pointer, so that the value passed in
can be modified by the overloaded function. However, in this example we do not need to
modify the arguments (a andb) in order to implement the addition operator, so we use the
const keyword7, which prevents the function from modifying the arguments passed in. The
advantage of passing arguments byconst reference is that less stack overhead is needed
for large objects.8

6A complex number has both a real and imaginary part.
7Neveruse non-const references outside of operator overloading because doing so will make the code

incredibly hard to read and understand; others that use your code will not be expecting the function arguments
they pass in to be able to be modified by the callee function.

8The extra time needed to indirectly access the value through a pointer may be greater than just copying
the values to the stack if the objects are small. However, the actual size of an object may be difficult to
determine, so the best solution is usually passing byconst reference.

University of Illinois at Urbana-Champaign

67

An Incomplete List of Advice for Sophomore System Builders

1. Take on a big project during your next few years.

2. Learn to use a debugger.

3. Don’t put off learning about tools (such as make, CVS, perl, etc…).

4. Avoid optimizing prematurely.

5. Build. Burn. Rebuild.

6. The best designers are the best testers and debuggers.

7. Good code is like good prose.

8. Take on a big team project during your next few years.

9. Don’t be afraid to break things.

10. Turn drudge work into opportunities for invention.

68

