ECE 190

Introduction to Computing Systems
Lab Manual

University of lllinois at Urbana-Champaign

Contents

OO ~NO UL WNPE

el
N R O

WWNRNNNMNNNNNNNRRRERRERPR
PO OO NOUDRWNRPLOOOONO®U AW

LC-3Convert e e 1
LC-3Assembler. e 2
LC-3Simulator e 3
GNUC Compiler-gcc o o e 4
DebuggingwithGDBandDDD 5
Vimand gVim e e 7
Emacsand XEmacs 8
Tutorial One - Linuxand LC-3Tools 9
Tutorial Two - C Programming i i i i 15
Tutorial Three - DebuggingwithGDB 21
Extensionto LectureOne 29
Memory Example 31
Soda Dispenser e 32
Counting Example 33
Read Number - MachineCode 35
Read Number - Systematic Decomposition. 36
Letter Frequency - MachineCode 37
Letter Frequency - AssemblyCode, 38
Read Number Subroutine 39
Dump Memory e e e e 40
Factorial e 41
Number Translator 42
Insertion Sort e 43
Inputand OutputinUnixand C 44
Line Sort e 49
Unique Count e e e 51
Word Split 52
Memory Managementheader 53
Memory Managementcode 54
Object-oriented Programming 57
Advice e 68

1 LC-3Convert

Thelc3convert

program converts machine code to an executable that can be run in the simulator.

Note: The first line in the program contains the address of the first instruction. For example, if the
first line of the program i©®011 0000 0000 0000 , the first instruction will be located aB000

when running the simulator.

Command Description

Ic3convert yourfile.bin Ic3convert will create yourfile.obj , Which
can then be used in the simulator.

Ic3convert -b2 yourfile.bin Signifies that Yourfile.bin " has ma-
chine code in binary (base 2). Same

”

“Ic3convert yourfile.bin

Ic3convert -b16 yourfile.bin

Signifies that §ourfile.bin
in hex (base 16).

Errors

Description

line contains only x digits

Indicates that onlx digits of a 16-bit LC-3 instruc-
tion was specified.

line contains more than 16 digits

Indicates that the line has too many digits.

contains unrecognizable characters

Indicates that invalid characters were used.

constant outside of allowed range

Immediate values such asim5, PCoffsetll ,
PCoffset9 , offset6 , and trapvect8 have a
valid range of [_Qnum,bits—17Qnum,bits—l _ 1]
(This error only applies if the file is in hex.)

" has machine code

as

2 LC-3 Assembler

The LC-3 Assembler¢3as) assembles the file so it can be run in the simulator.

Command Description

Ic3as yourfile.asm Createsyourfile.obj , Which is the object file that can be
loaded into the simulator angurfile.sym , which is the sym-
bol table.

Errors Description

file contains only comments Indicates that there are no assembly instructions in the(file,

only comments.

no .ORIG or .END directive found All programs must begin wittORIG followed by the start-
ing address of the program, and must end W&KD.

no .ORIG directive found All programs must begin wittORIG followed by the start-
ing address of the program.

multiple .ORIG directives found | Only one.ORIG command is allowed per file.
instruction appears before .ORIG Instructions must start after th@RIG directive.

no .END directive found All programs must end wittEND.

label appears before .ORIG All code must be after th®©RIG directive.

label x has already appeared Indicates that a second label with the same name has peen
found.

unknown label x Indicates that labet is referenced, but does not exist.

label has already appeared Each label in a program must only be used once. However,
it can be referenced multiple times.

illegal operands for x Indicates that the instruction has invalid operands.

unterminated string Indicates that a string specified by tISTRINGZ directive

was not closed with quotation marks.
contains unrecognizable charac-Indicates the line has characters that the assembler cannot
ters parse.
WARNING: All text after .END igt Any instructions after theEND directive are not processed
nored by the assembler.

constant outside of allowed range All constants are limited by their bitwidth. The valid range
is [_Qnum,bits—l 2num,bits—1 _ 1}

Note: the assembler will tell the total number of errors found in each pass and the line on which
these errors occur. However, the assembler only checks for syntax errors, not whether the code is
actually doing what it is supposed to.

3 LC-3 Simulator

The Linux/UNIX version of the simulator is used in this class and will be the version that all the
programs are tested against. It is STRONGLY recommended that you use this version rather than
the Windows version.

Basic Commands

Command Description

Ic3sim yourfile.obj Load your program into thecommand-line simulator.
You can also typelc3sim and use the command
“file yourfile.obj " to load the program.

Ic3sim-tk yourfile.obj Load your program into thegraphical simulator. You

can also typdc3sim-tk and load a file by clicking the
“Browsé button at the bottom of the screen.

reset Reset the LC-3 and reload the last file.
quit Quit the simulator.
help Print the help message.

Running the program

Command Description

continue Continues (or starts) execution of the program.

break Sets a breakpoint. In the graphical version, you can double-click pn a
memory location to set a breakpoint. The line will turn red when a break-
point is set.

finish Execute until the end of the current subroutine.

next Execute next instruction. If the next instruction is a subroutiisRj or
TRAP it will execute the entire subroutine RAP.

step Execute one instruction. If the next instruction is a subroutisR) or
TRAP, it will step intothe subroutine oTRAP.

Examining Memory and Registers

Command Description

list List instructions at the PC, an address, or label.
dump ... Dump memory at the PC, and address, or a label.
translate <addr> Show the value of a label and print the contents.
printregs Print registers and current instruction.

memory <addr> <val> Set the value stored at a memory location.
register <reg> <val> Set a register to a value.

execute <file name> Execute a script file.

1The graphical version displays memory and registers, so these commands are specific to the command-line version.
After editing a register or memory value in the graphical version, press the Enter key to apply the change.

4 GNU C Compiler - gcc

Programs written in C for the class will be compiled using the GNU C compgler), gcc is
available on all the Linux EWS machines. Although you may work on other machines to write your
code, all C programs will be compiled usiggc for grading, so it is your responsibility to make
sure it works on the Linux EWS machines.

gcc has many flags and command-line options, so only those used by the class are described here.
For more information aboujcc , seehttp://gcc.gnu.orgor type “man gecc” on a Linux machine.
For each MP, we will provide the correct command to compile your programgaith

The typical command to compile C programs for this class is
gcc -Wall -ansi -g -0 mp_num mp_num.c

Flag Description

-Wall Turns on all warnings when compiling.

-ansi Makesgcc use the ISO C89 standard.

-g Creates debugging symbols so you can run your program in a debugger.

-0 Specifies the name of the compiled program. In the example above, the pro-
gram would be namedtip_nunf.

After all the flags comes the source file(s). In the example above, the sourcenfileriam.c.

5 Debugging with GDB and DDD

The GNU Project Debuggegdb, is a command-line program that allows you to debug the C
programs that you will write. The DataDisplayDebuggtld, is a graphical front-end faydb, so

all thegdb commands work for it as well. It will be useful to know how to use a debugger since
some of the C programming assignments at the end of the semester are more challenging. Even if
you do not need a debugger for this class, you will need one at some point in the future, so now is
a good time to learn. More documentationgaib is available ahttp://www.gnu.org/software/gdb/

and more information oddd can be found attp://www.gnu.org/software/ddd/

Compiling: When compiling withgcc , make sure to use thed'” flag, which will compile with
debugging symbols for use withib.

Basic Commands

Command Description
gdb my_program_name Start GDB.
ddd my_program_name Start DDD.
quit Quit GDB or DDD.

Program Control Flow
Command Description
run Start the debugged program. If the program takes command-line argu-
ments, you may specify them as well. For example, if you normally start
the program with the commanehy_program argumentl ", you would
use the commandtn argumentl "
finish Finish executing until the selected stack frame returns.
continue Continue to run the program until the next breakpoint. Usetinénue
command after you have hit a breakpoint and want to continue running
the program.

step Step through a line of source in the prograstep will step intofunction
(subroutine) calls.
next Step through the program, batep overthe function (subroutine) calls

(the function calls will still execute).

Displaying Information

Command Description

list List the source code of the program with line numbers. You can @also
specify a line number to display the source code around that line (e.g.,
list 100

print Print out an expression (variables, etc.).

info break Print out breakpoint information.

info locals Print out local variables.

info function Print out all function names.

info variables Print out all global and static variables.

Breakpoints

Command Description

break <line # or function name> Set a breakpoint at the specified line (e.g.,
break 100) or at the specified function (e.g.,
break foo).

cond <breakpoint #> <C expression> Set a conditional breakpoint that will only

break when the C expression evaluates to frue
(e.g.,cond 1 if (x > 0) will make break-
point 1 only break if the variable is greater
than 0).

delete <breakpoint #> Delete the breakpoint.

Stack Information

Command Description

where or bt Print a backtrace of all the stack frames.
up Move up to the stack that called this one.
down Move down to the stack called by this one.

6 Vimand gVim

Vim is different than most editors because it has several modes, such as normal mode (command
mode), visual mode, and insert mode. Typingyitutor

that teaches the basics of Vim. For more detailed information on Vinhtpg/www.vim.org

" in an xterm window will start a tutorial

not

per-

Basic Commands

Command Description

vim or gvim Start Vim or gVim.

vim my_file Open afile in Vim.

[Switch to insertion mode. Vim starts in command mode, which does
allow you to edit text. Switching to insertion mode allows you to edit text.

Command Mode Operations

Command Description

escape Switches to command mode. Being in command mode allows you tg
form the operations listed below.

W Save (write) the file you are currently editing.

:q Quit Vim.

q! Quit Vim without saving changes.

Jline Jump to line numbeline (e.g., “30 " will jump to line 30.)

u Undo.

CTRL-R Redo.

y Copy (yank) highlighted text.

d Cut highlighted text.

p Paste text.

Visual mode: Another mode that lets you select text for copying and pasting. To switch to visual
mode presTRL-V. You can then use the arrow keys to select text. After selecting text, press
escape to switch back to command mode.

7 Emacs and XEmacs

Unlike Vim, Emacs does not have modes. Emacs commands are typically written in the form
“C-x C-s ”, which means holdCTRLandx, then pres€TRLands. Some commands are written
such as M-x”, where Mstands for the meta key, which correspond#\td or escape on most
machines. For more detailed information on Emacs Wig://www.gnu.org/software/emacs/

Basic Commands
Command Description
emacs Or xemacs Start Emacs or XEmacs.
emacs my_new_file Create a new file.
C-h t Start the Emacs tutorial.
C-x C-s Save the file.
C-x C-c Exit Emacs.
M-x goto-line Go to a specific line number.
M-w Copy highlighted text.
C-w Cut highlighted text.
C-_ Undo (holdCTRL, shift , and the dash).
C-y Paste text.

ECE190 Tutorial One

Introduction to Linux and LC-3 Tools

John H. Kelm

ECE 190 University of lllinois at Urbana-Champaign 1

Logging In and Account Access

. You can log in locally using any of the EWS machines
located in Everitt, Engineering Hall, DCL, or Grainger.

. Any of these machines can also be accessed remotely.

. Once you login, enter the command ecel90 to access your
ecel90 directory located under: ' /work2/ecel90/<net id>'

From this directory you will have access to all the LC-3
commands and the handin command to submit your
completed Machine Problems.

Note: Grading is done on EWS Linux machines—make
sure your code works on one of these machines before
turning it in.

ECE 190 University of lllinois at Urbana-Champaign 2

10

Basic Command Reference

Command Description

man <command> Prints the manual page help information
(usage:'man ssh')

1s, 1s -al List contents of directory

cd <directory> Change the current directory-with no
options, takes you to your home
directory

rm <filename> Remove a file (Caution!)

pwd Print the current directory

cp <src file> <dest file> Copy a file from one Tlocation to
another

mv <src file> <dest file> Move a file from one Tlocation to
another (Caution!)

ECE 190 University of lllinois at Urbana-Champaign 3

A Sample LC-3 ASM File

Run the command ece190 and follow the steps below.

1

eelnx12> ece}’go/{ See where you currently are in the filesystem. ‘
ecel90> pwd

/work2/ecel90/jkelm2
ecel90> cd /homesta/ecel90/11inux_tutorial/ Go to TA directory.

ecel90> 1s

mp0.asm

ecel90> cp mp0.asm /work2/ecel90/jkelm2/ «—

ecel90> cd /work2/ecel90/jkelm2 ’ Copy the file to your home directory. ‘
eceld0> 1s

|

mp0.asm -shell

Go back to your home directory. ‘

ecel90> vim mp0.asm

ECE 190 University of lllinois at Urbana-Champaign 4

Text Editor Choices

. Editors:
— Vim (or gVim)
. Check out http://www.vim.org for more details.
- Emacs (or XEmacs)

. Go to http://www.gnu.org/software/emacs/ to learn
about this option.

. Make sure you know how to open, edit, close, save
files—this may sound trivial, but both have large

learning curves due to their immense power and utility.

ECE 190 University of lllinois at Urbana-Champaign 5

LC-3 Assembler

Purpose: Convert human-readable LC-3 assembly code into
machine-readable object (.obj) file.

Example:

ecel90> 1s

mpO .dasm { Assembly code to turn into an object file.
ecel90> lc3as mp0.asm «——— Run 1c3as and check for

STARTING PASS 1 errors.

0 errors found in first pass.

STARTING PASS 2 Symbol File: Contains a mapping between

. symbols and addresses.

0 errors found in second pass. (e.9., LOOP-> x3001)
eceld0> 1s

mp0.asm mp0.obj mp0.sym

ecel90> '%{ Object File: The executable for the simulator.
ECE 190 University of lllinois at Urbana-Champaign 6

11

LC-3 Simulator

Purpose: To step through the output of an LC-3 program cycle

by cycle.
Example:
Start the simulator with assembled object file. ‘
ecel90> Ts
mpO0.asm mp0.obj mp0.sym Special Registers:
ecel90> 1c3sim mp0.obj PC — current address of execution.

- IR — instruction being executed.

PC=x0494 IR=XB1AE PSR=x0400 (ZERO) | PSR - processor state register.

RO=x0000 R1=x7FFF R2=x0000 R3=x0000 R4=x0000 R5=x0000 R6=x0000 R7=x0490
x0494 xOFF9 BRNZP TRAP_HALT T

Loaded "mp0.obj" and set PC to x3000

(1c3sim) help .\

’ Print list of available commands. ‘

’ Current value of general purpose registers.

Note: There is a GUI version (1c3sim-tk) that can also be used.

ECE 190 University of lllinois at Urbana-Champaign 7

LC-3 Command Reference

break (cl/ear | 7ist | set <label | address>) — Setsa
breakpoint where execution will stop.

step/next — move from one instruction to the next (i.e., state transition/clock tick)

continue/finish — Run the code up until the next breakpoint (or run it until
complete).

list <label | address > — Print the code/data around the address or label given as
an argument.

dump <label | address> — Display values in memory near location taken as
argument.

memory/register — Allows the user to set value in memory or register,
respectively.

reset/quit — Restart the simulation at .ORIG address or leave the simulation,
respectively.

ECE 190 University of lllinois at Urbana-Champaign 8

Submitting Your Finished Work

1) Log into an EWS machine.

2) Run the ece190 command and make sure the file you are
submitting is located in the current directory

3) Submit your MP by running handin.

Example:

mycomputer$ ssh -1jkelm2 eelnx12.ews.uiuc.edu
please enter your password: *¥#*¥#*

eelnx12> ecel90 { Make sure you are in your ece190 account.
< [

ecel90> 1Is -« ‘ Check to make sure file exists.

mp0.asm

ecel90> handin --MP 0 mp0.asm «—— Turn in the file (can be done multiple
The file “mp0.asm” has been copied. | times before deadline).

eceld0> exit

eelnx12> exit ’ Check handin output to make sure file was copied.

ECE 190 University of lllinois at Urbana-Champaign 9

Advice

. Backup often

- Example: Create backup and disable writing

cp mpl.bin mpl_backupO.bin
chmod a-w mpl_backup0O.bin

. Learn to use command line tools

- Example:
. Vim instead of gVim.

. Commands: cp, rm, mv, etc. instead of a GUI FS
manager.

ECE 190 University of lllinois at Urbana-Champaign 10

13

14

Supplemental: Remote Login

. EWS only allows secure logins—i.e., ssh,
putty, sftp

. CITES has information on obtaining and

installing SSH clients:
http://www.cites.uiuc.edu/security/ssh/index.html

. There is a listing of EWS machines at
http://www.ews.uiuc.edu/labs/.

ECE 190 University of lllinois at Urbana-Champaign 11

ECE190 Tutorial Two

Introduction to C Programming

John H. Kelm

ECE 190 University of lllinois at Urbana-Champaign

Vim/Emacs Setup

» Use syntax highlighting and automatic
indentation to make bug finding easier.

» We created setup files for Emacs and Vim.

cp /homesta/ecel90/for_students/.vimrc ~/.vimrc
.Or...

cp /homesta/ecel90/for_students/.vimrc ~/.gvimrc
..or...

cp /homesta/ecel90/for_students/.emacs ~/.emacs

ECE 190 University of lllinois at Urbana-Champaign

15

16

Compilation Process

my_mp
my_mp_code.c i | my_mp_code.S
y—mP- | y-mp- (x86 Linux ELF
(Cfile) i | (x86 ASM file) executable)

N\

Note: Linking omitted for clarity

ECE 190 University of lllinois at Urbana-Champaign 3

Creating a C Program

» Go to your favorite text editor (which of course is Vim)

#include <stdio. h>.\

This is what gives us printf()

int mainQ {
printf(“I <3 ECE190.\n");
return O;

» Save the file as: c_tut.c

ECE 190 University of lllinois at Urbana-Champaign 4

Compiling First C Program

* In the same directory as where you just saved the file,
compile it.
’ece190> gcc -ansi -wall -g -oc_tut c_tut.c ‘
— gcc — The GNU compiler (Important: GNU is Not Unix!)
— -Wall -ansi — Turn on all warnings (More on this soon)
— -o<output_file> — Where the executable will go
— -g — Include a symbol table with the executable (For debugging)
* Run the program:

ecel90> ./c_tut
I <3 ECE190!
ecel90>

ECE 190 University of lllinois at Urbana-Champaign 5

Warnings and Errors

* The -Wall -ansi command line arguments
will force gcc to show ALL warnings.

* We require that your program create NO
warnings or errors.

A warning is a friendly reminder that although
what you are doing functions, it is incorrect.

* An error is a not so friendly reminder that
something is incorrect and compilation cannot
proceed.

ECE 190 University of lllinois at Urbana-Champaign

17

18

Adding User Input

* We now want to allow the user to input a number and
then print it back out to the screen.

#include <stdio.h>

int mainQ {
int input;
printf(“Input: ”);
scanf(“%d”, &input);
printf(“You entered: %d\n”, input);
return 0; tL\

Note: &input is the address

} ’ Further Note: input is the value

I

» Recompile!

ECE 190 University of lllinois at Urbana-Champaign 7

Conditionals

* What if we only want to print out numbers
greater than 5?

int mainQ {

&mﬁC%&,&mmmh Why are there no braces?
if (input > 5)
printf(“You entered: %d\n”, input);

else
printf(“Your number was less than 5!\n”);
return 0;
}
ECE 190 University of lllinois at Urbana-Champaign 8

Looping Constructs

* What if we want to say we really love the class?

#include <stdio.h>

int ma1'inn(t) 'i{; /What value does this have?

for (A1 =0; i <5; i++) {
printf(“I <3 ECE190.\n”);
}

return O;

}

* Note: We used braces ({' and ‘}"), but here we did not
need to. If the block of code inside the loop (or
conditional!) is more than one line, they are required.

ECE 190 University of lllinois at Urbana-Champaign 9

Switch Statements

» Used when you need to make a decision
that may have many outcomes

char input;
printf(“select a state (‘g’, ‘y’, ‘r’): “);
scanf(“%c”, &input);
SAEE c(;:epu‘tg)’ :{ Remember to use a break
printf(“Green!\n”);
break;
/* other cases */
default:
printf(“Bad input!\n”); Fall-through case
break;
}
ECE 190 University of lllinois at Urbana-Champaign 10

19

20

Debugging Tips

Errors and warnings will happen, but not in MP’s
gat get turned in for all the credit you deserve

Use printf() calls to diagnose problems.

Think about whether you are dealing with
addresses (i.e., pointers) or values (i.e.,
locations in memory)

Know what *, **, & are doing to alter the
meaning of your variables.

The GNU debugger, gdb, is a vital tool--we will
introduce it at a later date.

ECE 190 University of lllinois at Urbana-Champaign 11

ECE190 Tutorial Three

Debugging with GDB

John H. Kelm

ECE 190 University of lllinois at Urbana-Champaign

Role of Debugging

» A way to find and correct runtime errors.
» Pointer analysis is hard to do statically
(i.e., at compile time).

 Semantics and Algorithms : Code looks
correct, but produces incorrect results.
Check by stepping through execution.

» Debugging can answer one important
question: Where is this darn segfault
coming from?

ECE 190 University of lllinois at Urbana-Champaign

21

22

Common Error Types

» Dereferencing null pointers

*pt r 4’=/5/_ What if we set ptr to NULL by mistake?

e Buffer overflow (e.g., str_ptr = NULL instead of *str_ptr = NULL)
int ar ray [10] ;./f Where is array in memory? ‘
What if i ==-4? | Will this always
. crash?
array[i] = OXBEEF;
* Infinite looping
for(i = 0; i < 10; i--) { .. }

ECE 190 University of lllinois at Urbana-Champaign 3

GDB Commands

e run argl arg2 ... — Start the program in motion.

» step — Go one line of code forward (may be multiple
instructions).

* next — Like step, but steps over function calls (i.e., you
do not start stepping through a function call, rather
you step to the line proceeding the call).

» break label — When the application is about to execute
this line, stop.

* delete <bp #> — Remove a breakpoint.

e continue — Restart execution from a breakpoint.

o Ctrl+C — Stop gdb. Useful when you are stuck in an
infinite loop.

ECE 190 University of lllinois at Urbana-Champaign 4

GDB Commands (cont.)

eprint symbol — Print a variable (can use *ptr to get value
of a pointer).

slist — Print C code for where we are in the program.

sinfo locals - Display the local variables.

«disassemble — View x86 assembly language of our
program.

*bt — Get a back trace (i.e., view the call stack)
«frame — The current stack frame.

kill — Terminate the program (send it a SIGKILL—more on
this in 391 or an OS class).

equit — Exit gdb.

ECE 190 University of lllinois at Urbana-Champaign 5

Getting Started

Log into your ece190 account.
Get the file:
cp /homesta/ecel90/for_students/gdb_test.c ~/

Compile the file (Must have -g flag):
gcc -g -ogdb_test gdb_test.c

Try executing gdb_test and watch it fail :-(.

Start the application in gdb:
gdb ./gdb_test

ECE 190 University of lllinois at Urbana-Champaign 6

23

24

Stepping

e Concept : Just like Ic3sim, but a whole line
of C code (which could be any number of
x86 instructions).

e This is the basic form of movement
through programs that you will do in
ECE190.

» But the program just executes and either
crashes or finishes—how do | ‘step’?

ECE 190 University of lllinois at Urbana-Champaign 7

Breakpoints

» Stop program prior to execution of a

specific line of code. |How does GDB do it

GDB is smart and places the

How do I do it?

A basic method for stopping
execution immediately and allowing
you to step through it from the start is
by setting a breakpoint at main().
For this to work, the breakpoint must
be set prior to typing run.

equivalent of a TRAP in LC-3 at the
point you want to break (gdb for x86
machines use the int3 instruction).
When the program being traced (for
more information look into the Linux
ptrace facilities) by gdb hits that
point, the OS is summoned and
runs a special routine that hands
control off to gdb. You can consider

(gdb) break main it magic.

Breakpoint 1 at 0x80483bb: file gdb_test.c, line 6.

ECE 190 University of lllinois at Urbana-Champaign 8

Start Running!

» We can view the breakpoint:

’(gdb) info breakpoints

|

* We will now let execution begin and go to our

first breakpoint:

(gdb) run

...GDB Information Stuff...
char str[10] = “Howdy”;
(gdb)

 We can view the where we are in the code too:

| (gdb) Tist

|

ECE 190 University of lllinois at Urbana-Champaign

Move Around a Little

* Now we can proceed a little bit, step a few times:

(gdb) step
11 for (i =0; i > -10; i++) {

* Where are we in the stack? A less trivial example:

(gdb) kill Where you are now. ‘
(gdb) b bar
Gaels) vy What is this? Where would it be

in memory?

(gdb) bt
#0 bar (d=12472) at gdb_test.c:35

#1 0x080483fe in foo() at gdb_test.c:31
#2 0x08048378 in main () at gdb_test.c:13

ECE 190 University of lllinois at Urbana-Champaign

10

25

26

Displaying Values

» We can stop the program, but what
information can we get about that current

process’ state? Nifty Hints:
- 5 gdb can do auto-completion

The command ‘print’ allows us to view by hitting tab after print. You

the value of a particular variable that is may also want to look deeper

in the current scope of execution. This into the use of info

is the main piece of information you will commands. (Type ‘help info’

be interested while debugging in at the (gdb) prompt).

ECE190.

(gdb) print str_ptr To dump all local variable

$1 = Oxbfffb220 “Howdy” values try : info locals
ECE 190 University of lllinois at Urbana-Champaign 11

How Does Any This Help Us?

It may not be clear at first, but not all problems
can be solved by strategically placing printf()
(even with fflush(stdout)!)

« If the application just segfaults, like this one,
what can we do?

— Randomly change things until it works.
— Scatter printf statements everywhere.
— Use the debugger, of course!

ECE 190 University of lllinois at Urbana-Champaign 12

What is a Segmentation Fault?

« Requires understanding paging (note: segmentation is a bit of a
misnomer and really a relic from old architectures like x86 that think
segmentation is cool)—All of this is way beyond the scope of
ECE190.

What you need to know:

— You own a certain area of memory (e.g., your application space, your
stack space, your global variables)

— You cannot touch other parts of memory (e.g., whatever really is at
address 0x0 (NULL pointer—usually nothing is here), or thinking in
terms of LC3—A regular user should not be able to alter the trap space
that the OS owns).

— If you try to dereference (i.e., get the value at) a pointer to a location you
do not own, Linux causes your program to die. (Your program becomes
OxDEADBEEF OF rather, a sicsecv AKA a segmentation violation).

ECE 190 University of lllinois at Urbana-Champaign 13

Let Us Find That Segfault

» Load the program back into gdb and start
the application with the ‘run’ command.

’ What happened to my program?

Program received signal SIGSEG\?T Segmentation fault.
0x0804838a in main () at gdb_test.c:18

18 if (*str_ptr != ‘0’>\
(gdb) | Where did it happen?

Whatcha’ gonna do? Who did this to me?
%
S e G I The OS did it because you did
Ghostbusters? No. GDB! something bad.
ECE 190 University of lllinois at Urbana-Champaign 14

27

How to be Sure This is Wrong

« Remember, we can view values at
runtime? Well we can even see them after

the crash:

Let us take a look at that pointer
we are dereferencing first.

(gdb) print str_p‘t/r
$1 = Ox1 <Address 0x1 out of bounds>

(gdb) Intuition: What do all of the addresses
in our program look like? Does
address ‘Ox1’ look the same way?

ECE 190 University of lllinois at Urbana-Champaign 15

Determine What We Did Wrong

 Now we may want to look at the code and
see why Linux crashed our hapless

application.
{ The offending line of code.
(gdb) Tist
......... Lots and lots of code....
18 if (¥str_ptr != ‘0’)
19 str_ptr = NULL;
......... more code.......
db Hrm...Did we mean to make that pointer
(gdb) NULL? Or did we want the value

pointed to by that pointer to be NULL?

ECE 190 University of lllinois at Urbana-Champaign 16

ECE190: Introduction to Computing Systems Fall 2005
Extension to Lecture 1

This handout describes the first problem known to be undecidable. Thigiriateeyond the
scope of the course but is nonetheless reasonably accessible ancnitnaodgou should
eventually (in future semesters) be able to recognize it readiig. nTdterial is not intended to be
part of the core material for the class, and you will not be tested ds jitrsit for fun and the
future.

The Halting Problem

Another thing that Alan Turing did in his paper in 1936 was to introduce (amd)piat there
are in fact problems that cannot be computed by a universal computing machuréngr
machine, as we've come to call them today (remember also that everythinge teatlve
computer today is equivalent to a Turing machine). The problem that proveitlaidecusing
proof techniques almost identical to those developed for similar prelitethe 1880s, is now
known as the halting problem, and is the subject of this document.

Turing also conjectured that his definition of computable was idemtiche “natural” definition.

In other words, a problem that cannot be solved by a Turing machine cannot bersalved i
systematic manner, with any machine, or by any per$tins thesisremains unproven!

However, neither has anyone been able to disprove the thesis, and it is widslgdwdibe true.
Disproving the thesis requires that one demonstrate a systeeadtinigue (or a machine) capable
of solving a problem that cannot be solved by a Turing machine. No one has lectendabéo

to date.

The halting problem is easy to state and easy to prove undecidable. The psabisngiven a
Turing machine and an input to the Turing machine, does the Turing macléhecbmputing in
a finite number of steps (a finite amount of time)? In order to solve the prodteanswer,
either yes or no, must be given in a finite amount of time regardless of thémar input in
question. Clearly some machines never finish. For example, we can wuitiag fhachine that
counts upwards starting from one.

To see that no Turing machine can solve the halting problem, we begin byrassuatisuch a
machine exists, and then show that its existence is self-contradititeycall the machine the
“Halting Machine,” or HM for short. HM is a machine that operates on anotaehine and its
inputs to produce a yes or no answer in finite time: either the machine iroguesshes in
finite time (HM returns “yes”), or it does not (HM returns “no”). Tigure below shows its
operation:

Turing yes
machine - HM Or
+ inputs no

From HM, we construct a second machine that we call the HM Inverter, or H\MB.machine
inverts the sense of the answer given by HM. In particular, the inpuesdad@ectly into a copy
of HM, and if HM answers “yes,” HMI enters an infinite loop. If HM answes,* HMI halts.
A diagram appears on the next page.

29

30

Turing no
MAaChiNG e———— - HM - ClONE

+ inputs

yes

count foreve

HMI

The inconsistency can now be seen by asking HM whether HMI halts when giVieasitse
input (repeatedly). Two copies of HM are thus being asked the same questiocop@isethe
one that we are using, and the second is embedded in the HMI machine that we are th&ing
input to our HM. As the two copies of HM operate on the same input (HMI operatinlyljn H
they should return the same answer: a Turing machine either halts ontawnirpdoes not; they
are deterministic.

Let’'s assume that the HM tells us that HMI operating on itself h@hen the copy of HM in
HMI (when HMI executes on itself, with itself as an input) must also yag.™ But this answer
implies that HMI doesn't halt (see the figure above), so the answeddmeg been no!

Alternatively, we can assume that HM says that HMI operating on itsedf miat halt. Again, the
copy of HM in HMI must give the same answer. But in this case HMI halts) egairadicting
our assumption.

Since neither answer is consistent, no consistent answer carebeagd the original assumption
that HM exists is incorrect. Thus no Turing machine can solve thiegharoblem.

You may be familiar with a related problem known as the Liar’s paradox (whithdast 2,300
years old). In its stengthened form, it is the following sentence: “€htgsce is not true.”

ADDR WE IN, IN, IN,

D Q D Q D Q
WE WE WE
N L L i
F_J
[! \
\J \J -
D Q D Q D Q
WE WE WE
— [i}
F_/
)l I I \
g U g
D Q D Q D Q
WE WE WE
sz) . i)
F_J
) I \
U g U
D o] D ol D o
WE WE WE
— [i}
f_/

ouT, OouT, ouT,

A

. CLOCK
a one—cycle soda dispenser
Co
(DEW button)
D Q
Si
C1 4 - 6 [
(TAB button)
(DEW)
D Q
(coins in) P (TAB)

02/14/05
12:12:02 counting-example

0x3000

0x3001

0x3002

0x3010

0x3011

0x30A0

0x3000

0x3001

0x3002

0x3010

0x3011

0x30A0

0x4123

counting to ten with PC-rel ative addressing

0010 010 010011111

0001 010 010 1 00001

0011 010 010011101

(somet hing that we want to do ten tines)

0001 010 010 1 10110

0000 100 111101110

0000000000000000

counting to ten with indirect addressing

1010 011 010011111

0001 100 011 1 00001

1011 100 010011101

(somet hing that we want to do ten tines)

0001 100 100 1 10110

0000 100 111101110

0100000100100011

0000000000000000

33

02/14/05
12:12:02 counting-example

0x3000
0x3001
0x3002

0x3003

0x3018

0x3011

0x30A0

34

counting to ten with base+offset addressing

1110 110 010011111

0110 001 110 000OOO

0001 001 001 1 00001

0111 001 110 000000

(sone nore conplex task that we want to do ten tines)

0001 001 001 1 10110

0000 100 111100111

0000000000000000

GE

09/19/05

17:30:53 readnum.bin
; read a deci mal nunber fromthe keyboard, ; first error nmessage (all in ASCI)
; convert it fromASCIl to 2's conplenent, and 00000000 00001010 ; LF (line feed)
; store it in a predefined nenory location. |If 00000000 01101110 c'n
; any non-nuneric character is pressed, or the 00000000 01101111 ;o
; nunber overflows, store a 0 and print an error 00000000 01101110 ;n
, nmessage. 00000000 00101101 S
00000000 01100100 ;o d
; RO holds the value of the |last key pressed 00000000 01101001 HE
; Rl holds the current value of the nunber being input 00000000 01100111 ;'g
; R2 holds the additive inverse of ASCII 0" (OxFFDO) 00000000 01101001 R
; R3 is used as a tenporary register 00000000 01110100 ;o
00000000 00100000 .
00110000 00000000 ; starting address is x3000 00000000 01110000 ;P
00000000 01110010 o
0010 010 000010100 ; LD R2, x14 (put the value -x30 in R2) 00000000 01100101 ;e
0101 001 001 1 00000 ; AND Ri1,R1, #0 (clear the current val ue) 00000000 01110011 ;s
1111 0000 00100000 ;. TRAP x20 (read a character) 00000000 01110011 ;'S
1111 0000 00100001 ; TRAP x21 (echo it back to nonitor) 00000000 01100101 ;e
0001 011 000 1 10110 ; ADD R3, RO, #-10 (conpare with ENTER) 00000000 01100100 ;o d
0000 010 000010001 ; BRz x11 (ENTER pressed, so done) 00000000 00001010 i LF (l'ine feed)
0001 000 000 O 00 010 ; ADD RO, RO, R2 (subtract x30 from RO) 11111111 11111111 ; end of string marker
0000 100 000010001 ; BRn x11 (smaller than 0" neans error)
0001 011 000 1 10110 ; ADD R3, RO, #-10 (check if >'9") ; second error nessage (all in ASC 1)
0000 011 000001111 ; BRzp xF (greater than "9 neans error) 00000000 00001010 ; LF (l'ine feed)
0001 011 001 O 00 001 ; ADD R3,R1,R1l (sequence of adds nmultiplies Rl by 10) 00000000 01101111 ;o
0000 100 000010101 ; BRn x15 (overflow, but not really necessary here) 00000000 01110110 HERAA
0001 011 011 0 00 011 ; ADD R3,R3,R3 00000000 01100101 ;e
0000 100 000010011 ; BRn x13 (overflow, but not really necessary here) 00000000 01110010 ;o
0001 001 001 O 00 011 ; ADD R1,R1, R3 00000000 01100110 ;T
0000 100 000010001 ; BRn x11 (overflow) 00000000 01101100 N
0001 001 001 0 00 001 ; ADD R1,R1, RL 00000000 01101111 ;o
0000 100 000001111 ; BRn xF (overfl ow) 00000000 01110111 W
0001 001 001 O 00 000 ; ADD R1,R1,R0O (finally, add in new digit) 00000000 00001010 ; LF (l'ine feed)
0000 100 000001101 ; BRn xD (overfl ow) 11111111 11111111 ; end of string marker
0000 111 111101101 ; BRnzp Ox1ED (get another digit)
11111111 11010000 ; the additive inverse of ASCII 'O’
11111111 11111111 ; storage for the result
; done
0011 001 111111110 ; ST R1, x1FE
1111 0000 00100101 ; TRAP x25
; print error message: "non-digit pressed"
R4 hol ds pointer to character
; RO used to pass output character to trap
; end of string marked with negative val ue
1110 100 000001001 ; LEA R4, x9 (point R4 to the start of the string)
0110 000 100 000000 ; LDR RO, R4, #0 (read character pointed to by R4)
0000 100 000000011 ; BRn x3 (done printing)
1111 0000 00100001 ;. TRAP x21 (print the character)
0001 100 100 1 00001 ; ADD R4, R4, #1 (point to next character)
0000 111 111111011 ; BRnzp x1FB (loop to read string)
0101 001 001 1 00000 ; AND Ri1,R1, #0 (clear the current val ue)
0000 111 111110110 ; BRnzp x1F6 (store the zero and end)
; print error nessage: "overflow'
1110 100 000010101 ; LEA R4, x15 (point R4 to the start of the string)
0000 111 111110111 ; BRnzp x1F7 (branch back to the string-printing code)

9€

to hist

load pointer

ogram

Y

fill histogram
with zeroes

Y

initialize

load useful values
into registers:
A7 A
Aa

Y

point to start
of string

Yes

Y Y

Y

Y

Y

increment increment
non—alpha counter alpha counter

increment
non—alpha counter

increment
alpha counter

increment
non—alpha counter

Y

point to next
character

LE

00110000 00000000 ;

1110 000 011111111

,

09/26/05
15:17:43

Count the occurrences of each letter (Ato 2)

in an ASCI| string terminated by a NUL character.
Lower case and upper case shoul d be counted
toget her, and a count also kept of all

non- al phabetic characters (not counting the
term nal NUL).

The string starts at x4000.

The resulting histogram (which will NOT be
initialized in advance) shoul d be stored starting
at x3100, with the non-al phabetic count at x3100,
and the count for each letter in x3101 (A) through
X311A (2).

RO holds a pointer to the histogram (x3100)
R1 holds a pointer to the current position in the string
and hol ds the |l oop count during histograminitialization
R2 holds the current character being counted
and is also used to point to the histogramentry

R3 holds the additive inverse of ASCII '@ (0xFFQ0)
R4 holds the difference between ASCII '@ and 'Z (XxFFES6)
R5 holds the difference between ASCII '@ and "'’ (xFFEO)

R6 is used as a tenporary register
starting address is x3000
LEA RO, xFF

fill the histogramw th zeroes

0101 110 110 1 00000 AND R6, R6, #0 (put a zero into R6)

0010 001 000100000 ; LD R1, x20 (initialize loop count to 27)
0001 010 000 1 00000 ; ADD R2, RO, #0 (copy start of histograminto R2)
; loop to fill histogramstarts here

0111 110 010 000000 ;. STR R6, R2, #0 (wite a zero into histogran)
0001 010 010 1 00001 ; ADD R2, R2, #1 (point to next histogramentry)
0001 001 001 1 11111 ; ADD R1,R1,#-1 (decrenment |oop count)

0000 001 111111100 ; BRp x1FC (continue until |oop count

0010 011 000011011 ; LD R3,x1B (set R3 to additive inverse of ASClI
0010 100 000011011 LD R4, x1B (R4 holds difference between ASCl |
0010 101 000011011 ; LD R5, x1B (R5 holds difference between ASCI |
0010 001 000011011 ; LD R1, x1B (point RL to start of string)

initialize Rl, R3, R4, and R5 from nenory

letterfreq.bin

; the counting loop starts here

(point RO to the start of the histogram

reaches zero)

‘@)

'@ and 'Z")

'@ and "’

)

0110
0000

0001
0000

0110
0001
0111
0000

0001
0000

010
010

001 000000
000010100

010
001 000000100
000 000000
110 1 00001
000 000000
000001100

000000101

010 0 00 100 ;

,

010 0 00 011 ;

’

,

LDR R2, R1, #0 (read the next character fromthe string)
BRz x14 (found the end of the string)

ADD R2, R2, R3 (subtract '@ fromthe character)

BRp x4 (branch if >'@, i.e., >="A")

LDR R6, RO, #0 (| oad the non-al pha count)

ADD RG6, R6, #1 (add one to it)

STR R6, RO, #0 (store the new non-al pha count)

BRnzp xC (branch to end of conditional structure)
ADD R6, R2, R4 (conpare with 'Z")

BRp x5 (branch if >'272")

; note that we no |onger need the current character
; SO we can reuse R2 for the pointer to the correct
; histogramentry for

0001
0110
0001
0111
0000

subtracting as bel ow yields the original
010 010 0 00 101 ;

010 010 0 00 000 ;

110 010 000000
110 110 1 00001
110 010 000000
111 000000101

110 111110011

110
110
111

010 0 00 100
111110111
111110000

001
111

001 1 00001
111101010

0000 00100101

incrementing

,
’
,
’

’

’

ADD R2, R2, R0 (point to correct histogramentry)

LDR R6, R2, #0 (l oad the count)

ADD R6, R6, #1 (add one to it)

STR R6, R2, #0 (store the new count)

BRnzp x5 (branch to end of conditional structure)
character minus '*’

ADD R2, R2, R (subtract '’ - '@ fromthe character)

BRnz x1F3 (if <=7, i.e., <’a, increnent non-al pha)

ADD R6, R2, R4 (conpare with 'z")

BRnz x1F7 (if <= 'z, go increnent al pha count)

BR x1F0 (ot herwi se, go increnent non-al pha)

ADD R1, R1, #1 (point to next character in string)

BRnzp Xx1EA (go to start of counting | oop)

TRAP x25 (done)

; the data needed by the program
00000000 00011011
11111111 11000000
11111111 11100110
11111111 11100000
01000000 00000000

,
’

27 loop iterations

the additive inverse of ASCII '@

the difference between ASCII '@ and ' Z
the difference between ASCII '@ and '‘’
string starts at x4000

w 09/26/05

[oe] o .
15:17:43 letterfreqasm.asm
; (An assenbl y-1anguage version of the original binary code.) ; the counting loop starts here
COUNTLCOP
; Count the occurrences of each letter (Ato 2) LDR R2, R1, #0 ; read the next character fromthe string
; inan ASCI| string term nated by a NUL character. BRz DONE ; found the end of the string
; Lower case and upper case shoul d be counted
; together, and a count also kept of all ADD R2, R2, R3 ; subtract '@ fromthe character
; non-al phabetic characters (not counting the BRp AT_LEAST_A ; branch if >’ @, i.e., >="A
; terminal NUL). NON_ALPHA
LDR R6, RO, #0 ; load the non-al pha count
; The string starts at x4000. ADD R6, R6, #1 ; add one to it
STR R6, RO, #0 ; store the new non-al pha count
; The resulting histogram (which will NOT be BRnzp GET_NEXT ; branch to end of conditional structure
; initialized in advance) should be stored starting AT_LEAST_A
; at x3100, with the non-al phabetic count at x3100, ADD R6, R2, R4 ; conpare with 'Z
; and the count for each letter in x3101 (A) through BRp MORE_THAN Z ; branch if >'Z
; X311A (2).
; note that we no |onger need the current character
; RO holds a pointer to the histogram (x3100) ; SO we can reuse R2 for the pointer to the correct
; R1 holds a pointer to the current position in the string ; histogramentry for incrementin
; and as the |l oop count during histograminitialization ALPHA ADD R2, R2, RO ; point to correct histogramentry
; R2 holds the current character being counted LDR R6, R2, #0 ; load the count
; and is also used to point to the histogramentry ADD R6, R6, #1 ; add one to it
; R3 holds the additive inverse of ASCII '@ (OxFFQ0) STR R6, R2, #0 ; store the new count
; R4 holds the difference between ASCII '@ and 'Z' (xFFE6) BRnzp GET_NEXT ; branch to end of conditional structure
; R5 holds the difference between ASCII '@ and ' ‘' (xFFEO)
; R6 is used as a tenporary register ; subtracting as below yields the original character mnus "’
MORE_THAN_Z
.ORIG x3000 ; starting address is x3000 ADD R2, R2, R5 ; subtract '’ - '@ fromthe character
BRnz NON_ALPHA ; if <=7 i.e., <’a, go increnent non-al pha
LEA RO, HI ST ; point RO to the start of the histogram ADD R6, R2, R4 ; conpare with 'z’
BRnz ALPHA ; if <=z, go increnment al pha count
; fill the histogramwith zeroes BRnzp NON_ALPHA ; otherwi se, go increnent non-al pha
AND R6, R6, #0 ; put a zero into R6
LD R1, NUM BI NS ; initialize |oop count to 27 GET_NEXT
ADD R2, RO, #0 ; copy start of histograminto R2 ADD R1, R1, #1 ; point to next character in string
BRnzp COUNTLOOP ; go to start of counting | oop
; loop to fill histogramstarts here
HFLOOP STR R6, R2, #0 ; wite a zero into histogram DONE HALT . done
ADD R2, R2, #1 ; point to next histogramentry
ADD R1, R1, #-1 ; decrenent | oop count ; the data needed by the program
BRp HFLOOP ; continue until |oop count reaches zero NUM_BI NS .FILL #27 ; 27 loop iterations
NEG_AT .FILL xFFCO ; the additive inverse of ASCII '@
; initialize R, R3, R4, and R5 from menory AT_MN_Z . FILL xFFE6 ; the difference between ASCII '@ and 'Z
LD R3, NEG_AT ; R3 holds additive inverse of ASCII '@ AT_M N_BQ . FI'LL xXFFEO ; the difference between ASCII '@ and ' "’
LD R4, AT_M N Z ; R4 holds difference between ASCII '@ and ' Z STR_START .FI'LL STRING ; string stored below for sinplicity
LD R5, AT_M N_BQ ; R holds difference between ASCII '@ and '*’ H ST . BLKW #27 ; space to store the histogram
LD R1, STR_START ; point Rl to start of string
STRING .STRINGZ "This is a test of the counting frequency code. AbCd...WYz."
. END

09/30/05

6€

16:53:03 readnumsub.asm
; read two nunbers using a subroutine and store themto nenory ; print error nessage: "non-digit pressed”
BAD_KEY
. ORI G x3000 ; starting address is x3000 LEA RO, BK_MSG ; point RO to the start of the string
PRI NT_ERR
JSR READNUM read two nunbers and store them PUTS ; the trap that you're not allowed to use in MP2
ST RO, NUML AND R1, R1, #0 ; reset current val ue
JSR READNUM BRnzp READ_LOOP ; try reading again
ST RO, NUM2
HALT ; print error nessage: "overflow'

subroutine devel oped as an extension of the

; earlier binary code

; read a decimal nunber fromthe keyboard,

; convert it fromASC | to 2's conpl enent, and

; return it in RO. If any non-numeric character
; is pressed, or the nunber overflows, print an

OVERFLOW
LEA RO, OF_MBSG
BRnzp PRI NT_ERR

SAVE_R1 . BLKW 1 ; storage for saved register val ues
SAVE_R2 . BLKW 1
SAVE_R3 . BLKW 1
SAVE_R7 . BLKW 1

; error nessage and start over. NEG 0 . FILL xFFDO ; the additive inverse of ASCII 'O’
NUML . BLKW 1 ; storage for the results
; RO holds the value of the | ast key pressed NuUMe . BLKW 1

; Rl holds the current val ue of
; R2 holds the additive inverse
; R3 is used as a tenporary regi

t he nunber being input
of ASCII 'O’ (OxFFDO)
ster

error messages. The sequence \n neans new ine and is replaced

; wWith a single ASCI| |inefeed character (#10). Simlar sequences

; include \r for #13 (carriage return), \t for #9 (TAB), \\ for

READNUM the subroutine to read a nunber backsl ash, etc.
BK_MSG .STRINGZ "\nnon-digit pressed\n”
ST R7, SAVE_R7 ; TRAP overwites R7, so nust save OF_MBG . STRINGZ "\ noverflown"
ST R3, SAVE_R3 ; callee saves register val ues
ST R2, SAVE_R2 . END
ST R1, SAVE_R1
LD R2, NEG 0 ; put the value -x30 in R2
AND R1, R1, #0 ; clear the current val ue
READ_LOOP
GETC ; read a character
out ; echo it back to nonitor
ADD R3, RO, #-10 ; conpare with ENTER
BRz DONE ; if ENTER pressed, done
ADD RO, RO, R2 ; subtract x30 from RO
BRn BAD_KEY ; smaller than '0' neans error
ADD R3, RO, #- 10 ; check if >'9
BRzp BAD_KEY ; greater than '9 neans error
ADD R3, R1, R1 ; sequence of adds nultiplies RL by 10
BRn OVERFLOW ; overflow, but not really necessary here
ADD R3, R3, R3
BRn OVERFLOW overflow, but not really necessary here
ADD R1, R1, R3
BRn OVERFLOW ; overflow
ADD R1, R1, RL
BRn OVERFLOW . overfl ow
ADD R1, R1, RO ; finally, add in new digit
BRn OVERFLOW ; overflow
BRnzp READ_LOOP ; get another digit
DONE

ADD RO, R1, #0
LD R1, SAVE_RL
LD R2, SAVE_R2
LD R3, SAVE_R3
LD R7, SAVE_R7

RET

; move RL into RO
; restore register values for caller

;o oreturn

point RO to the start of the string

N
o

10/22/05
14:27:47

* % ok ok %k ok % ¥

/

* 0%

-~

B

/

voi d

dunp_renory (int addr_s,
int start;
int addr;
int

/* Sinplify code by not

if

/*

for

ECE190 Fal |
Program nane: dunp_nenory.c,

Descri ption:

i ncl ude <stdio. h>

include "1c3simh"

Functi on:
Descri ption:
Par anet er s:

Ret urn Val ue:

2005
a procedure to print the contents of menory

This function uses the LCG-3 sinulator’s read_nenory function
to print the contents of nenory froma starting address to
an endi ng address (both given as paraneters).

/* Include Cs standard 1/0O header file.

/* Include the header file for the LC-3 sinulator.

dunp_nenory

print a range of LC-3 nmenory in hexadeci mal

the starting and endi ng addresses; the range printed does
not include the ending address, but stops at the previous
| ocation

not hi ng

int addr_e)

/* First address of line being printed.
/* Address being printed.

i ndex; /* Index of address being printed on current line (0-11).
usi ng nodul ar arithnetic for address range.

If given range waps around 0, replace the ending address with

one that is larger than the starting address, but equival ent

nodul o the size of the nenory space. */

(addr _s >= addr_e)

addr _e += 0x10000;

Loop 12 addresses at a tine.
be multiples of 12. */
(start = (addr_s / 12)

Starting addresses for |ines nust

* 12; start < addr_e; start = start + 12) {

/* Print an address at the start of each line. Since start
is not necessarily in the valid range 0 to OxFFFF, we first
AND it with OXFFFF. */

printf ("9%94X ", start & OXFFFF);

/* This | oop goes over all 12 addresses in the current line.
The index variable runs fromO to 11 (counts to 12), while
the addr variable tracks the address currently being printed.
(index = 0, addr = start; index < 12; index++, addr++) {

*/
for

/* We only print an address if it lies within the requested
range. The value in menory is returned by the call to
read_nmenory. |If an address is not within the requested
range, we print blank space for printing alignment purposes.

if (addr >= addr_s && addr < addr_e)
printf ("9%94X ", read_nmenory (addr & OxFFFF));

el se
printf (" ")

*/

}

/* End the printed line.
puts (")

*/

*/

*/

*/
*/
*/

dump_mem.c

a sanpl e of the output

01F8:
0204:
0210:
021C

E002 F022 F025 000A
0057 0065 006C 0063 006F 006D 0065 0020 0074 006F 0020 0074
0068 0065 0020 004C 0043 002D 0033 0020 0073 0069 006D 0075
006C 0061 0074 006F 0072

114

12/06/05
13:31:56

/*

* ECE190 Fal | 2005

*

* Program name: factorial.c, a factorial calculator

*

* Description: This program asks for an integer, then cal cul ates and
* prints the factorial of the nunber.

*/

/* The following two |ines are preprocessor directives. */

#i ncl ude <stdio. h> /* Include Cs standard |/O header file. */
#defi ne STOP 1 /* Stop when we reach one. */

/*

* Function: main

* Description: pronpt player for nane and bet, then play gane and announce
* the out cone

* Paraneters: none (we're ignoring the standard ones to nain for now)
* Return Value: 0, which by convention indicates success

*

/

int

main ()
/* variabl e declarations */
int nunber; /* nunber given by user */
int factorial; /* factorial of user’s nunber */
/* Print a wel cone nessage, followed by a blank line. */
printf (">--- Welconme to the factorial calculator! ---<\n\n");
/* Ask for and read the player’s bet into a variable. */
printf ("Wat factorial shall | calculate for you today? ");
scanf ("%l", &nunber);
/* Calculate and report the answer (no overflow checking!). */
for (factorial = nunber; nunber > STOP; nunber = nunber - 1)

factorial = factorial * (nunber - 1);

printf ("\nThe factorial is %l.\n", factorial);
/* Program finished successfully. */
return O;

}

factorial.c

IS
N

12/06/05

/*
* ECE190 Fal | 2005
*
* Program name: translate.c, a nunber translator
*
* Description: This program asks for a decinmal nunber, then prints out
* the absol ute value of the nunber in hexadecimal form
*/
#i ncl ude <stdio. h> /* Include Cs standard I/ O header file. */
int the_nunber; /* the nunber -- no good reason to be a global variable
other than to serve the purpose of the exanple */
/*
* Function: find_abs
* Description: convert an integer to its absolute val ue
* Paraneters: the number to convert
* Return Value: the absolute value of the number passed
*/
int
find_abs (int num
{
int abs_val ue;
if (num>= 0) {
/* Don’t change positive nunmbers. */
abs_val ue = num
} else {
/* Negative of negative nunber is the absolute value. */
abs_val ue = -num
}
return abs_val ue;
}
/*
* Function: main
* Description: pronpt user for a decinal nunber, then print absolute val ue
* in hexadeci mal
* Parameters: none (we're ignoring the standard ones to main for now)
* Return Value: 0, which by convention indicates success
*/
int
main ()

/* no local variable declarations */

/* Ask for and read the player’s bet into a variable. */
printf ("Please enter a deci mal nunber: ");
scanf ("%l", &t he_nunber);

/* Find the absol ute value. */
the_nunmber = find_abs (the_nunber);

/* Print the answer. */
printf ("The absolute value in hexadecimal is %.\n", the_nunber);

/* Program finished successfully. */
return O;

trandate.c

ey

12/08/05
19:51:52

/*
* insertion sort -- performs an assertion sort on an array of integers
* inputs: values -- a pointer to an array of integers
* numvals -- the nunber of values in the array
* outputs: values -- returned in sorted order
* returns: nothing, but changes array in place
*
* NOTE: does nothing if numvals < 2
*
*/
voi d
insertion_sort (int values[], int numyvals)
{
int sorted; /* outer |oop index; nunber of values sorted
int current; /* current value being placed into sorted subarray */
int index; /* inner loop index for placing current value
/* Checks on input paraneters should go here.
What ki nds of things mght you check? */
/* We start with a subarray of length 1 already sorted, so
we need iterations to sort each | arger subarray fromlength 2
up to the full length of the array. */
for (sorted = 2; sorted <= numuvals; sorted++) {
/* Keep track of the value being noved into position. */
current = values[sorted - 1];
/* Move other array entries aside to make roomfor "current." */
for (index = sorted - 1; index > 0; index--) {

/* Check the order of "current" against the value before
that at index. |If it's still smaller, nove the val ue
and continue the loop. Oherw se, we’ve found the place
to which we nust nove "current." */

if (current < values[index - 1])

val ues[index] = values[index - 1];
el se
break;
}
/* Store current in the right place. */
val ues[index] = current;
}
/* No return value. */
}

insertion.c

44

ECE190: Introduction to Computing Systems Fall 2005
Lecture 23 10 November 2005

Input and Output in Unix and C

Basic Abstractions

Unix and C support a unified abstraction for input and output (I/0O) known as file descriptors. Input and output from
everything ranging from devices to files to network connections uses the same abstraction. In particular, the operating
system maintains an array of structures with information about I/O channels, with each channel occupying one place in
this table. The array index at which a given channel appears can thus be used to locate the corresponding information
within the table, and a file descriptor is nothing more than an integer. Most operating systems limit the size of the table
to 1,024 entries by default, so descriptors are typically in the range O to 1,023. A diagram appears in Figure 1.

Notice that the first three entries in the array of I/O channels are occupied by the “standard” I/O channels for a program.
These channels are set up by the operating system before a program starts. If you execute a program by itself from
within a shell, input comes from the keyboard, and output (both normal and error output) goes to the monitor. However,
these defaults are easily overridden. In fact, you probably use a graphical window manager when working, in which
case the output from your programs does not go to the monitor, but instead to the window manager for display in the
window in which your program was started. In the original scheme for providing network services on Unix machines,
known as i net d (for “Internet Daemon”), the operating system started programs in response to incoming network
connections, replacing the standard input and output channels for the new program with the incoming connection.
Network services could thus be written and tested easily from any standard shell, then simply redirected to accept
input and send output across the network when they were ready.

The information in the I/O channel structure allows the operating system to differentiate between the different types
of I/O channels as necessary, and this information can be accessed and manipulated by a wide array of generic and
special-purpose system calls, but most of these are beyond the scope of our class. We will consider only a certain class
of fairly general-purpose calls in this discussion.

In particular, we focus on the calls that use streams. A stream is a logical array of bytes that flow from one place to
another through an I/O channel. Some types of I/O channels do not fit readily into the stream model; some network
protocols, for example, break data into packets; most devices have control/status registers as well as data registers,
and the access pattern necessary to control these devices is generally not the simple linear progression that the stream
provides. Channels that can fit into the stream model include input from a keyboard, output to a monitor, files on a
disk', and certain types of network protocols.

The stream abstraction also provides support for buffering part of the stream in order to improve performance. Files
on disk are stored in blocks of four or eight kB, but can take tens of milliseconds to retrieve (tens of millions of
processor clock cycles). If this delay were incurred for each byte read from a file, a program would run quite slowly.
Even interacting with the operating system through a system call is relatively slow, however, often requiring tens or
hundreds of thousands of cycles or more. Buffering reduces the number of interactions with the operating system by
bringing data into the program in large blocks and using C library functions to handle most of the actual data transfer
for a stream.

Buffering also helps to simplify the implementation of certain expected behaviors. For example, reading from the
keyboard typically returns nothing until the user presses the RETURN/ENTER key. If this buffering is turned off,
every application must process BACKSPACE, since a keystroke delivered to the application cannot otherwise be taken
back. With the default buffering strategy, BACKSPACE is handled by keyboard-processing code, and application
programs see only lines that have been completed by pressing RETURN.

IThe disk itself is a block device, but the filesystem serves to translate this abstraction into a stream for any given file.

file descriptor 0 — | standard input (usualy from keyboard)
standard output (usually to monitor)
standard error channel (usually to monitor)
channels opened by program

file descriptor 1023 —= \

Figure 1: The array of I/O channel structures maintained for a program by the operating system. The array index for
a channel’s structure is used to identify the channel, and is passed around as a small integer known as a file descriptor.

In C, a stream is represented by a pointer to a structure containing information about the kind of buffering desired as
well as the file descriptor to be used by the stream. The structure is written FILE (all capitals), and is allocated by
library code, allowing a program to simply declare pointers to these structures in order to manipulate streams. For
example:

FILE* nmy_file;

declares a variable to refer to a stream.

Default and New Streams

The three default file descriptors created by the operating system are also associated with streams before a program
begins to execute. The input stream is named St di n, the output stream St dout , and the error stream St der r . Like
the file descriptors, St di n can only be read, not written, while St dout and st der r can only be written, not read.

Other streams can be created with several functions, the simplest of which are those used to access the files stored on
disk. As you should already be aware, Unix uses a hierarchical file system in which the names of files can consist of
sequence of directory names followed by a name for the file within its local directory.? Directories correspond exactly
to the folders used by graphical file system browsers. The file names used within a program are the same as those
used within a Unix shell (a shell is just a program, after all); also like a shell, each program has a notion of a current
directory, so files with no directory names in front of them refer to those files in the directory in which the program
was started (assuming that the program has not changed its current directory).

The function below opens a file:
FI LE* fopen (const char* file_name, const char* node);

The first argument is a string containing the name of the file. The second argument is a string specifying what types
of operations are to be performed on the new stream. The function returns NULL if the open fails, and the per r or
function can be called to print a human-readable error message in this case, such as “file not found” or “file not
readable.” If the file is opened successfully, the function returns a new stream, which should eventually be closed with
f cl ose, as described below.

The mode consists of a letter followed by an optional plus sign. If the plus sign is included, the file is opened for both
reading and writing. If the plus sign is not included, the file is opened for either reading or writing (depending on the
letter, as we discuss shortly), but not both. The letter “r” is used to open an existing file; an error is returned if the file
does not exist, and the file is opened for reading if no plus sign is included in the mode. The letter “w” creates a new
file for writing, first deleting an existing file of the given name if it exists, and allowing only writing if no plus sign is
included in the mode string. Finally, the letter “a” is used to write to the end of an existing file; in this case, if no file
exists yet, a new one is created. With the append option, the default mode is writing, and writing begins at the end of

the file.

%It may interest you to know that Unix “files” can actually be other channels in disguise, including everything from devices to network connec-
tions to channels to existing programs.

45

46

Finally, the letter “b” can optionally be included after the first letter (or the plus sign) with any mode, but has no
effect. On some older systems, the “b” signified that binary data were being stored in the file, and that certain standard
translations on ASCII text should not be performed to avoid corrupting the binary data. However, these translations
are for the most part obsolete, and are never performed on Unix platforms.

When a program is done using a stream, it should close the stream to free up the I/O channel resource, of which a
limited number are available for each program. For this purpose, use the following function:

int fclose (FILE* stream;

This function takes a stream and attempts to close it. If no errors occurred in accesses to the stream, the function
returns 0. If an error occurred, it returns EOF (-1).

All streams are closed when a program finishes execution, but it is a bad habit to rely on program termination rather
than using the f ¢l ose function. While you are unlikely to see any difference in this class, consider the impact of not
closing network connections in a web server: after the first 1,021 connections, the server begins to drop all requests,
as it has no free I/O channels.

Character by Character 1/0

Our description of I/O functions now parallels the textbook, but we will cover a few more functions than are described
in the text. We will also differentiate between the functions that operate on any stream and the shortcut functions that
operate on St di n and st dout .

The functions below support reading and writing single characters to streams:

int fgetc (FILE* stream); /* read one character (a function) */

int getc (FILE* strean); /* read one character (a macro) */
int fputc (int ¢, FILE* strean); /* wite one character (a function) */
int putc (int c, FILE* stream; /* wite one character (a nmacro) */

The first two functions return the ASCII character read from the stream (converted into an integer), or EOF (-1) if the
read attempt failed. These calls by default block until input is available. That is, a user’s not having typed a character
yet does not cause the call to fail. Instead, the operating system puts the program to sleep until a character is typed.
Recall that the same thing occurs in the LC-3 system calls, which wait for a character to be available rather than
returning a failure indicator. Failure thus indicates conditions such as reaching the end of an input file.

The difference between f get ¢ and get c is that the first is a function and creates a function call in the assembly code
generated by a compiler, while the second is a preprocessor macro-operation that copies the necessary code in place
of the call before compilation. In older machines, these functions allowed a tradeoff between superior performance
(get ¢) and reduced program size (f get ¢). In more modern machines, you’re probably better off using f get c.

The f put ¢ and put ¢ functions write a single character (specified by the first argument) to a stream. Although an
integer is passed, only a single unsigned character is actually written. These functions both return the value written if
successful, or EOF (-1) on failure.

Shortcut functions, both based the macro version of the functions above, are available for reading and writing single
characters to st di n and st dout . These functions are declared as follows:

int getchar (void); /* read one character fromstdin (a macro) */
int putchar (int c¢); /* wite one character to stdout (a nacro) */

The return values and argument are the same as for the corresponding previous functions, but the values of the stream
parameters are implicit in each case.

Reading and Writing Lines

For text files, it is usually most convenient to work with a line at a time, reading each line into an array of characters
and treating it as a string, or writing each line into an array of characters before sending it off to the file. The two
functions used for these purposes with streams are:

char* fgets (char* s, int n, FILE* strean); /* read one line */
int fputs (const char* s, FILE* stream; /[* wite a string */

The f get s function reads one line of text from a stream into the array of characters given by its first argument. The
second argument specifies the size of the array, and f get s also stops reading if it runs out of room. The function
always appends an ASCII NUL character to terminate the string, so it reads at most n-1 characters from the stream. If
a full line is read, the linefeed (LF, or “\n” in C) character is also written into the specified array of characters. The
function returns its first argument when successful, and NULL when no further data are available from the stream (or
some other error occurs).

The f put s function writes a string to a stream. No additional characters are sent, so the string must include a linefeed
character at the end if it is to appear as a line in a text file. The function returns the number of characters written or
EOF on failure.

Shortcut functions are available for both of these functions, but the shortcut for reading a line does not allow the caller
to specify the length of the array, and thus poses a security hazard. You should never use the get s function! The
majority of network attacks use strategies based on exactly this type of function, so you should simply never use it.
The shortcut function used to write a string to St dout is declared as:

int puts (char* s); /* wite one line to stdout */

This function differs from f put s not only in implicitly writing to St dout , but also in that it also writes a linefeed
character to st dout after writing the string passed. A string meant to become a single line of output must therefore
NOT include a linefeed character at the end. The return value meanings are the same as for f put s.

Formatted 1/0O

You have already seen the scanf and pri ntf functions used to translate between the ASCII text representing
human-readable text and the binary forms understood by a computer. These two functions are simply the shortcut
forms of the more general functions for reading and writing formatted data to streams:

int fscanf (FILE* stream const char* fm, ...);
int fprintf (FILE* stream const char* fnt, ...);

The only difference between these functions and those already familiar to you is the need to include the stream as the
first argument. With scanf , the st di n stream is used implicitly, while pr i nt f implicitly writes to st dout . Note
that any information that should instead be delivered to St der r must use the more general form.

A third form of these functions is also useful, particularly in combination with the functions described in the previous
section for reading lines and writing strings to streams:

int sscanf (const char* s, const char* fm, ...);
int sprintf (char* s, const char* fnt, ...);

These functions read and write formatted data to strings (arrays of characters). Note that the printing function does not
allow the caller to specify the size of the array, and can thus be attacked in certain cases. Be careful to allocate enough
space for a printed string; you may prefer to use the snpri nt f function instead, but I’'m not sure that it is required
by the ANSI standard, thus you may need to write this function yourself for fully portable code.

47

48

Binary 1/0

The last set of functions that we cover allow you to send binary data, such as the contents of an array, directly to and
from a stream. While Unix does not perform any translations on bytes, none of the preceding functions allow you
to transfer arbitrary sequences of bytes, a fact often overlooked by novice programmers. Pretending that an array of
integers is a string does not generally work, for example, as any zero byte in the array ends the “string.”

Before describing the functions, we need to explain some possibly new types. To reflect growth in file and memory
sizes, ANSI C actually uses a separate type to specify sizes in bytes, allowing this type to grow (to 64 bits, for example)
without necessarily growing the size of an integer. This type is called Si ze_t , but you can think of it as unsigned
32-bit integer, and on most systems it is just that.

A second type, a pointer to a null type (voi d*), is used to allow automatic conversions to and from any other pointer
type. In particular, if the type of a parameter to a function is voi d*, any pointer type can be passed without causing
the compiler to repond with warnings or errors

The functions are declared as follows:

size t fread (void* ptr, size_ t size, size_t n_itens, FILE* strean);
size_t fwite (const void* ptr, size_t size, size t n_itens, FILE* stream;

The list of arguments to both functions is essentially the same. The first argument is a pointer to the memory to be filled
with bytes from the stream (in the case of f r ead) or from which bytes should be written to the stream (in the case of
fwrite). The second argument specifies the size of items to be read or written, typically using the Si zeof () built-
in function, which is evaluated at compile time to the size of a type (or variable’s type) in bytes. The third argument
specifies how many such items should be read or written, and the last argument gives the stream. Both functions return
the number of items (NOT the number of bytes) read or written to the stream. Typically, a return value equal to the
third argument indicates that the call was completely successful, but partial success or total failure is also possible,
such as when a disk fills up or a user exceeds a disk quota.

No shortcut functions are available, as binary data are not normally delivered by or to human users.

6v

12/06/05

/*

* ECE190 Fall 2005

*

* Program nane: line_sort.c, a sorting program

*

* Description: This program al phabetically sorts lines from stdin.

* Lines are stored using dynamically allocated nenory.

*/
#i ncl ude <stdio. h> /* Include Cs standard I/ O header file. */
#i nclude <string. h> /* Include Cs string library. */
static const int max_numlines = 5000; /* limt on nunber of lines */
static const int max_line_len =500; /* limt on line length */

/* My favorite exit condition definitions. */

enum {
EXI T_SUCCEED = 0,
EXIT_FAIL =1,
EXI T_BAD ARGS = 2,
EXI T_PANI C =3
|

/* function declarations */

/* read lines fromstdin into an array; returns nunber of lines read */
static int read_lines (unsigned char* lines[], int max_|lines);

/* sort strings in an array al phabetically using insertion sort */

static void sort_lines (unsigned char* lines[], int n_lines);
/* print an array of strings in order to stdout */
static void print_lines (unsigned char* const lines[], int n_lines);

/*

* Function: main

* Description: read stdin one line at a tine, copying the |lines

* into dynamically allocated nmenory, then sort and

* print the lines

* Paranmeters: argc -- the nunber of argunents, including the executable name
* argv -- an array of strings containing each argunent

* argc nmust equal 1; no other argunents are allowed

* Return Value: EXI T_SUCCEED for success

* EXI T_BAD ARGS if the wrong nunber of argunents are given
*/

int

main (int argc, char* argv[])

lines */
lines */

unsi gned char* |ines[max_num.lines]; /* array of
int numlines; /* nunber of

/* Program nust

if (argc !'=1) {
/* Print an error nessage.
fprintf (stderr, "syntax:
return EXI T_BAD_ARGS;

recei ve exactly one argunent. */

argv[0] is the executable name. */
9%\ n", argv[0]);

}

/* Read, sort, and print lines fromstdin. */
numlines = read_lines (lines, max_num.lines);
sort_lines (lines, numlines);

print_lines (lines, numlines);

line_sort.c

/* Program finished successfully. */
return EX T_SUCCEED;

read_lines -- reads lines fromstdin into an array
inputs: lines -- an (enpty) array of strings

max_lines -- the size of the array

not hi ng

nunber of

out put s:

returns: lines read

* %k ok k% ok

/

static int
read_l i nes (unsigned char* lines[],

{

int max_|ines)

unsi gned char
int numlines;

buf [max_line_len + 1]; /* holds current line */
/* nunber of lines */

/* Initialize the line count. */
num|ines = 0;

/* Read lines until
while (fgets (buf,

we find the end of the input. */
max_line_len + 1, stdin) !'= NULL) {

/* Are nore lines available than we can read?
a warni ng nmessage and stop reading. */
if (numlines == max_|ines) {
fprintf (stderr, "WARNING Cannot sort nore than %l |ines.\n",
max_| i nes);

If so, print

break;

}

/* Make duplicate copy of line just read in heap nenory,
store pointer to new copy in lines array. */
lines[num.|ines++] = strdup (buf);

t hen

}

/* Return nunber of
return numlines;

lines read to caller. */

sort_lines --
i nput s:

performs an insertion sort on an array of
lines -- an array of strings

n_lines -- the nunber of lines in the array
lines -- returned in sorted order

not hi ng, but changes array in place

i ntegers
out puts:
returns:

NOTE: does nothing if n_lines < 2

L B

/

static void
sort_lines (unsigned char*

{

lines[], int n_lines)
int sorted; /*
char* current; /*

int index; /*

outer |oop index; nunber of lines sorted */
current |line being placed into sorted subarray */
inner loop index for placing current line */

/* W start with a subarray of length 1 already sorted, so
we need iterations to sort each larger subarray fromlength 2
up to the full length of the array. */

0S

B S

12/06/05

13:32:09

/

for (sorted = 2; sorted <= n_lines; sorted++) {

/* Keep track of the line being noved into position. */
current = lines[sorted - 1];

/* Move other array entries aside to make roomfor "current." */
for (index = sorted - 1; index > 0; index--) {

/* Check the order of "current" against the |line before
that at index. |If it’s still smaller, nmove the line
and continue the loop. Oherwi se, we’'ve found the place
to which we nust nove "current." */

if (strcnp (current, lines[index - 1]) < 0)
lines[index] = lines[index - 1];

el se
br eak;

}

/* Store current in the right place. */
lines[index] = current;

}
/* No return value. */
print_lines -- print an array of strings (lines)
inputs: lines -- an array of strings
n_lines -- the nunber of lines in the array
out puts: nothing
returns: nothing, but prints all lines in order to stdout

static void
print_lines (unsigned char* const lines[], int n_lines)

{

int index; /* loop index for printing */

/*

Print all lines in order. */

for (index = 0; index < n_lines; index++)

| *

fputs (lines[index], stdout);

No return value. */

line_sort.c

TG

12/06/05

13:32:16

B S S R

#i ncl ude <stdio. h>

ECE190 Fall 2005

Program nane: uni que_count.c, a unique |ine counting program

Description: This programreads lines fromstdin, nmerges identical
lines, and prints each line with a nunber prefix

i ndi cati ng how many tinmes the sane |ine appeared
consecutively in the input.

/

/* Include Cs standard 1/0O header file. */

static const int max_word_len = 500; /* linmt on word length */
/* My favorite exit condition definitions. */
enum {
EXI T_SUCCEED = 0,
EXIT_FAIL =1,
EXI T_BAD_ARGS = 2,
EXI T_PANI C =3
h
/*
* Function: main
* Description: read lines fromstdin, nerge duplicate consecutive |ines,
* and print lines prefixed by their nultiplicities in the
* input (consecutive counts only; appearance el sewhere is
* i gnor ed)
* Paraneters: argc -- the nunber of argunents, including the executable nane
* argv -- an array of strings containing each argunent
* argc nmust equal 1; no additional argunment are allowed
* Return Value: EXI T_SUCCEED for success
* EXIT_FAIL if the input contains no |ines
* EXI T_BAD ARGS if the wrong nunber of argunents are given
*/
int
main (int argc, char* argv[])
{

unsi gned char buf 1] max_word_len + 1]; /* a line

unsi gned char buf2[max_word_l en + 1]; /* a second |ine

unsi gned char* last_line; /* points to last line
unsi gned char* cur_line; /* points to current line

unsi gned char* tnp; /* a tenporary for swapping
int count; /* multiplicity of last_line
/* Program nust receive exactly one argunment. */
if (argc '=1) {
/* Print an error nessage. argv[0] is the executable nane. */
fprintf (stderr, "syntax: %\n", argv[O0]);
return EXI T_BAD ARGS;
}
/* Read the first line. */
if (fgets (bufl, max_word_len + 1, stdin) == NULL) {
fputs ("Could not read any lines!\n", stderr);
return EXIT_FAIL;
}
/* Initialize the double buffering scheme based on the first line's
residing in bufl. */
last_line = bufl;
count = 1;
cur_line = buf2;

unigue_count.c

/* Read lines until we find the end of the input. */
while (fgets (cur_line, max_word_len + 1, stdin) != NULL) {
/* Check for duplication. */
if (strcnp (cur_line, last_line) == 0) {
count ++;
conti nue;
}
/* Print last line (it already includes a carriage return). */

printf ("%d %", count, last_line);
/* Switch buffering for

tnp = cur_line;

lines, and reset count. */

cur_line = last_line;
last_line = tnp;
count = 1;
}
/* Print final line (it already includes a carriage return). */

printf ("9%d %", count, last_line);

/* Program finished successfully. */
return EXI T_SUCCEED;

*/
*/
*/
*/
*/
*/

)]
N

12/06/05

13:32:22

* ok ok %k ok %k ok % ¥

/

#i ncl ude <stdio. h> /* Include Cs standard I/ O header file. */
static const int max_word_len = 500; /* limt on word length */
/* My favorite exit condition definitions. */
enum {
EXI T_SUCCEED = 0,
EXIT_FAI L =1,
EXI T_BAD_ARGS = 2,
EXI T_PANI C =3
b
/*
* Function: main
* Description: read a file one character at a tine, break input into
* | ower - case words (al phabetic, hyphens, or apostrophes),
* and print words found on separate lines wi thout elimninating
* duplicates. Hyphens and apostrophes are not allowed to
* start words.
* Paraneters: argc -- the nunber of argunents, including the executable nane
* argv -- an array of strings containing each argunent
* argc nmust equal 2, and the second argunment is the file nane
* fromwhi ch words are read
* Return Value: EXI T_SUCCEED for success
* EXIT_FAIL if file cannot be opened
* EXI T_BAD ARGS if the wong nunber of argunments are given
*

/

int
i

{

ECE190 Fall 2005

Program name: word_split.c, an English word splitting program

Description: This programsplits its input into a list of |ower-case
words, with one word per line.
conti guous sequences of al phabetic characters,

Words nust begin with an al phabetic

and apostrophes.

character. Al other characters are discarded.

n (int argc, char* argv[])

FILE* in_file;

unsi gned char buf[max_word_len + 1];
unsi gned char* wite;

int word_|en;

int a_char;

Wrds are defined as

hyphens,

/* input file pointer
/* holds current word
/* end of current word

/* length of current word

/* last character read

/* Program nust receive exactly two argunents. */

if (argc !'=2) {

/* Print an error nessage. argv[O0]

is the executabl e nane.

fprintf (stderr, "syntax: % <file nane>\n", argv[0]);

return EXl T_BAD_ARGS;
}

/* Open the file for reading. */
in_file = fopen (argv[1], "r");
if (in_file == NULL) {

/* fopen failed: print an error nessage to stderr. */

perror ("open file");
return EXIT_FAIL;

*/

word_split.c

/* Initialize the word witing variable to point to the start of
the word buffer. */

wite = buf;

word_len = O;

/* Read characters until we find the end of the input. */
while ((a_char = getc (in_file)) !'= EOF) {

/* 1f necessary, change input character to | ower case. */
if (a_char >>"'A && a_char <='2")
a_char = a_char - "A + 'a’;

/* Can character be part of a word? */
if ((a_char >="a’ &% a_char <="2") ||
(word_len > 0 && (a_char =="'-" || a_char == "\""))) {

/* Wite the character into our word buffer and increnent
the pointer and counter. */

*wite++ = a_char;

wor d_| en++;

/* Do we still have roomin the buffer? If so, read
anot her character (skip to next loop iteration). */
if (word_len < max_word_|en)
conti nue;
} else {
/* Invalid character read. |s there a word that needs
to be witten out? |If not, skip to next character. */
if (word_len == 0)
conti nue;

}

/* Wite out the current word, then reset the buffer pointer
and character count. */

*wite = 0;

puts (buf);

wite = buf;

word_len = O;

}

/* Any |ast words? */
if (word_len > 0) {
*wite = 0;
puts (buf);

/* Close the input file, ignoring any errors. */
fclose (in_file);

/* Program finished successfully. */
return EX T_SUCCEED;

€S

12/06/05

13:32:35

/ tab: 8
menl99. h - header file for ECE199SJP' s sinple nmenory nmanagenent package
"Copyright (c) 2003 by Steven S. Lunetta."

R T T T S . T

/

#if

Permi ssion to use, copy, nodify, and distribute this software and its
docunent ation for any purpose, wthout fee, and wi thout witten agreenent
hereby granted, provided that the above copyright notice and the follow ng
two paragraphs appear in all copies of this software.

I'N NO EVENT SHALL THE AUTHOR OR THE UNI VERSI TY OF ILLINO S BE LI ABLE TO
ANY PARTY FOR DI RECT, | NDI RECT, SPECI AL, | NCI DENTAL, OR CONSEQUENTI AL
DAMAGES ARI SING QUT OF THE USE OF THI S SOFTWARE AND | TS DOCUMENTATI ON,
EVEN | F THE AUTHOR AND/ OR THE UNI VERSITY OF | LLINO S HAS BEEN ADVI SED
OF THE PCSSIBI LI TY OF SUCH DAMAGE.

THE AUTHOR AND THE UNI VERSI TY OF ILLINO S SPECI FI CALLY DI SCLAI M ANY
WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE. THE SOFTWARE
PROVI DED HEREUNDER IS ON AN "AS | S" BASIS, AND NEI THER THE AUTHOR NOR
THE UNI VERSITY OF | LLINO S HAS ANY OBLI GATI ON TO PROVI DE MAI NTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODI FI CATI ONS. "

Aut hor : Steve Lunetta
Ver si on: 1
Creation Date: 4 Decenber 2003
Fi | enane: mem99. h
Hi story:
SL 1 4 Decenber 2003
First witten.
I def i ned(_MEML99_H)

#define _MEML99_H

/*

*/

These constants define the limtations on nenory allocation with
the package. Nothing |arger can be conpiled. Note that the code for
the package nust be reconpiled if these nunbers are changed.

#define MEMLO9 MAX_ALLOC LOG 20

#def i ne MEML99_NMAX_ALLOC

/*

*/
Voi

/*

*/
voi

(1UL << MEML99_MAX_ALLOC LOG)

nmeml99_al | ocate

Al l ocates n_bytes and returns a pointer to the new nenory.
is available, or if O bytes are requested, returns NULL.
new nmenory may contain arbitrary val ues.

If no nenory
Note that the

d* nmenml99_al |l ocate (unsigned n_bytes);

nmenl99_al | ocate_and_zero

All ocates n_bytes, fills the new nenory with zeroes, and returns a
pointer to the new nmenory. |If no nenory is available, or if 0 bytes
are requested, returns NULL.

d* neml99_al | ocate_and_zero (unsigned n_bytes);

nmenl99 _real |l ocate

is

mem199.h

Attenpts to change the size of a previously allocated bl ock of nmenory.
The paraneters passed are a pointer to the pointer to the old block
(possibly NULL, if no previous block existed) and the new desired size.
If possible, a new block of the appropriate size is allocated, any
data in the old block are copied into the new bl ock, the old bl ock
is freed, the pointer is changed, and 0 is returned. |f the allocation
of a new block fails, the pointer to the old block is not changed,
the old block (if it existed) is not freed, and -1 is returned.
*/
int menl99_reall ocate (void** ptr_to_ptr, unsigned n_bytes);
/*
menl99_free

Returns control of a block of nenory to the nenory managenent system
The bl ock should not be accessed after a call to nenl99_free. The
bl ock may be returned by a successive call to any of the allocation
functi ons.

*/

void neml99_free (void* ptr);

#endif /* 1defined(_NEMLO9 H) */

]
N

12/06/05
13:32:28

tab: 8
menl99.c - a sinple nmenory managenent package for ECE199SJP
"Copyright (c) 2003 by Steven S. Lunetta."

Permi ssion to use, copy, nodify, and distribute this software and its
docunent ation for any purpose, wthout fee, and wi thout witten agreenent
hereby granted, provided that the above copyright notice and the follow ng
two paragraphs appear in all copies of this software.

I'N NO EVENT SHALL THE AUTHOR OR THE UNI VERSI TY OF ILLINO S BE LI ABLE TO
ANY PARTY FOR DI RECT, | NDI RECT, SPECI AL, | NCI DENTAL, OR CONSEQUENTI AL
DAMAGES ARI SING QUT OF THE USE OF THI S SOFTWARE AND | TS DOCUMENTATI ON,
EVEN | F THE AUTHOR AND/ OR THE UNI VERSITY OF | LLINO S HAS BEEN ADVI SED
OF THE PCSSIBI LI TY OF SUCH DAMAGE.

THE AUTHOR AND THE UNI VERSI TY OF ILLINO S SPECI FI CALLY DI SCLAI M ANY
WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE. THE SOFTWARE
PROVI DED HEREUNDER IS ON AN "AS | S" BASIS, AND NEI THER THE AUTHOR NOR
THE UNI VERSITY OF | LLINO S HAS ANY OBLI GATI ON TO PROVI DE MAI NTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODI FI CATI ONS. "

Aut hor : Steve Lunetta
Ver si on: 1
Creation Date: 4 Decenber 2003
Fi | enane: mem99. c
Hi story:
SL 1 4 Decenber 2003

First witten.

R T T T S . T

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

#i nclude "nmenl99. h"

/*
This nenory nmanager allocates blocks in sizes of powers of two,
all owi ng reasonably efficient reuse of freed blocks. As wth al nost
all menory managers, managenent information is held in a header
preceding the region allocated to the caller. For this inplenentation,
we need only the block size in the header, which allows free to
pl ace the block into the correct bin. W actually store the index
of the bin in our array of bins, which is equivalent to the log_2 of
the bl ock size.

*/

/*
The nenory bl ock header structure, stored at the front of each bl ock
of menory. It contains the size of the block and a pointer allow ng
us to chain free blocks together into a list.

*/

typedef struct nem.block_t nemblock_t;
struct membl ock_t {

unsi gned si ze;

mem bl ock_t* next;

I

is

mem199.c
/* static functions (not visible outside of this file) */
/*
meml99_i nit

*/

/*

*/

*/

{

Initializes the nenory managenent package. Called before any bl ocks
are all ocat ed.

static void meml99_init ();

1 0og2_ceil

Cal cul ates the |l ogarithmbase 2 of a nunber, rounded up to the
nearest integer. Useful in determ ning what size block to allocate
for a given nmenory request, as allocations are always nmade in powers
of two.

static int log2_ceil (unsigned value);

/* file scoped variables */
static char* free_bytes; /* unal | ocat ed nenory
static int n_free_bytes; /* unal | ocat ed bytes
static membl ock_t* mem bi n[f MEML99_MAX_ALLOC LOG+1]; /* free block lists
static int init_done = 0; /* package initialized?
/*

nmeml99_al |l ocate -- allocate a new bl ock of n_bytes

I NPUTS -- nini num nunber of bytes in block available to caller

QUTPUTS -- none
RETURN VALUE -- pointer to new bl ock (past header), or
NULL if no nore nmenory avail able

voi d*
neml99_al | ocate (unsigned n_bytes)

unsi gned bl ock_si ze; /* mnimum size of allocated bl ock */
int bin; /* bin that hol ds bl ocks of appropriate size */
mem bl ock_t* new_bl ock; /* the new bl ock */
/* On first call, initialize static data for the nmenory manager. */

if (!init_done)
mem99_init ();

/* Add room for a header to find the necessary size. */
bl ock_size = n_bytes + sizeof (*new_bl ock);

/* Unsigned, so no need to check for requests < 0. */
if (n_bytes == 0 || block_size > MEML99_MAX_ ALLCC)
return NULL;

/* Find the bin nunber. */
bin = 1o0og2_ceil (block_size);

/* Do we have a block sitting around? */
if (membin[bin] != NULL) {

/*
If so, renove the first one fromthe bin
(a linked list of blocks).

*

/

*/
*/

*/

GG

12/06/05
13:32:28

new_bl ock = mem bi n[bin];
mem bi n[bi n] = new_bl ock- >next;

} else {

}

/* No spare block, so try to allocate a new one. */
/* Find the total block size. */
n_bytes = (1UL << bin);
/* Not enough space left in heap? Return failure. */
if (n_free_bytes < n_bytes)

return NULL;

/* Allocate the block fromthe front of the heap. */
new_bl ock = (mem. bl ock_t*)free_bytes;
free_bytes += n_bytes;

n_free_bytes -= n_bytes;

/* Mark the block’s size in the header area. */
new_bl ock- >si ze = n_bytes;

/* Return a pointer to the part AFTER the header. */
return (new_bl ock + 1);

}
/*

menl99_al | ocate_and_zero -- allocate a new bl ock of n_bytes and fill

it with zeroes

I NPUTS -- m ni mum nunber of bytes in block available to caller

QUTPUTS -- none

RETURN VALUE -- pointer to new bl ock (past header), or

NULL if no nore nenory avail abl e
*/
voi d*
menl99_al | ocate_and_zero (unsigned n_bytes)
{

voi d* new_bl ock;

/* First allocate a block. |If the attenpt fails, so does this
function. */

new_bl ock = nmenml99_al | ocate (n_bytes);

if (new_block == NULL)
return NULL;

/* Set the bytes to zero. Note that the pointer returned to us
poi nts past the nmenory header, so we only zero the data to be
used by the caller, not the nenory nmanagenent information. */

nmenset (new_bl ock, 0, n_bytes);

/* Return the new bl ock. */

return new_bl ock;

}
/*

meml99 _real l ocate -- change the size of a block of nenory,

al l ocating
a new bl ock if necessary

INPUTS -- ptr_to_ptr, a pointer to the pointer to the old bl ock
n_bytes, the m ni mum nunber of bytes in reallocated bl ock
avail able to caller
QUTPUTS -- *ptr_to_ptr, a pointer to the new block (on success only)

RETURN VALUE --

0 for success, in which case *ptr_to_ptr nmay have changed

mem199.c
-1 for failure, in which case *ptr_to_ptr does not change
SI DE EFFECTS -- if a new block is necessary, and is created successfully,
data fromthe old block are copied into it, and the
old block is freed
*/
int
nmeml99_real | ocate (void** ptr_to_ptr, unsigned n_bytes)
{
nmem bl ock_t* ol d_block; /* pointer to old block of data */
nmem bl ock_t* new_block; /* pointer to reallocated block */
/*
Calling with ptr_to_ptr equal to NULL should lead to an
assertion (deliberate crash), but we'll just return failure.
*
/
if (ptr_to_ptr == NULL)
return -1;
/* 1f the pointer is valid, read the old block pointer. */
old_block = *ptr_to_ptr;
/*
If the new size (including the header) still fits in the
current block, nothing need be done to succeed. Note the
met hod used to access the header, which sits before the pointer
returned by the earlier allocation call.
*
/
if (old_block !'= NULL &&
n_bytes + sizeof (*old_block) <= ol d_block[-1].size)
return O;
/*
Try to create a new block. Return failure if necessary
(wi thout changing the old block pointer).
*
/
new_bl ock = menl99_al | ocate (n_bytes);
if (new_block == NULL)
return -1;
/*
New bl ock exists, so wite it over the old pointer; we still
have a copy in old_block for the rest of this function.
*
/
*ptr_to_ptr = new_bl ock;
/*
The data bl ock nust have grown, so copy all old bytes if an old
bl ock existed, then free the old block. Note that the header
bytes are not included, since old_block points past them and
the new bl ock has its own header.
*
/
if (old_block !'= NULL) {
nencpy (new_bl ock, ol d_bl ock,
ol d_bl ock[-1].size - sizeof (*old_block));
nmeml99_free (ol d_bl ock);
}
/* Al done. Return success. */
return O;
}
/*
nem99 _free -- free a block of nenory

a1l
o

12/06/05

INPUTS -- a pointer to the old bl ock
QUTPUTS -- none
RETURN VALUE -- none
S| DE EFFECTS -- the bl ock now belongs to the nmenory nmanagenent package,
which may reuse it later
*
/
voi d
mem99_free (void* ptr)
{
mem bl ock_t* nmemblock = ptr; /* menory bl ock pointer */
int bin; /* bin nunber for old block */
/* Check for free of NULL pointer. Again, should probably have
assertion rather than sinple return. */
if (ptr == NULL)
return;
/* Put the block into the appropriate bin. */
bin = log2_ceil (mem.block[-1].size);
mem bl ock[- 1] . next = mem_bi n[bin];
mem bi n[bin] = &rem bl ock[-1];
}
/*
menl99 init -- initialize menory managenent data
I NPUTS -- none
QUTPUTS -- none
RETURN VALUE -- none
SIDE EFFECTS -- initializes static data and sets up pointers to
unal | ocated region of menory (a sinulated heap)
*
/

static void
mentl99_init ()
{
/* Al
nenset (nmem.bin, O,

bins are enpty (set pointers to NULL). */
si zeof (mem.bin));

/* Allocate a "heap" for us to manage. */
n_free_bytes = 16 * MEML99_MAX_ ALLCC;
free_bytes = malloc (n_free_bytes);
if (free_bytes == NULL) {
perror ("initialize (malloc) nmenl99 package");
exit (3);
}

/* Init has run;
init_done = 1;

make a note of it. */

/*

log2_ceil -- calculate the logarithmbase 2 of the val ue passed, rounded
up to the nearest integer

INPUTS -- an unsigned val ue on which to operate

QUTPUTS -- none

RETURN VALUE -- ceil (log_2 (value)), as an integer, or

-1if value == 0

*/

static int

1 og2_ceil (unsigned val ue)

mem199.c

int ret_val;

/*
If value is a power of 2, we start counting at -1,
we start counting at O (to round up).

*/

if ((value & (value - 1)) == 0)
ret_val = -1;

el se
ret_val = 0;

/*
Shift the value to the right until it disappears.
a loop in this manner is not the fastest
is the sinplest.

*/

while (value > 0) {
ret_val ++;
val ue >>= 1;

}

return ret_val;

ot herw se,

Counting with

possi bl e nmethod, but it

Week 14 Introduction to Computing Systems ECE 190

14.1 Object-oriented programming

In C, it is only possible to hide code by putting it in a single file (file-scoped) and making
the functions static. However, it is often nice to be able to create “code modules,” where
the only way internal data can be modified is through specific functiomagtinods

C++ supports this idea of “code modules” withtasses A classis a structure plus addi-
tional information that includes information hiding and scoping support, function proto-
types, and static variables. C++ allows the class to be separated into visible (public) and
private portions.

Visible (public) Private
Existence of structures Data within structures
Interface functions | Internal (implementation) function
Initialization (constructadh)
Teardown code (destructgr

n

Functions that operate on a singistancegone copy) of something are common when pro-
gramming. Let’s say we again have ayer_t structure below that has some information
about one of the players in a game we are constructing.

struct player_t {

char* name; /* player login name */
char* password; [* cleartext password */
int num_played; /* number of games we have played */

int win_guesses [13];/* number of guesses it took to win */
double win_percent; [* percent of times we have won */
bi

In C, we might declare a function that is called when the player wins the game. It will
updatenum_played, win_percent, and thesin_guesses array when called:

void player_win(player_t* p, 1int num_guesses);

In C, we would call this function the following way:

player_t playerl; /[* assume player already initialized */
[* some code that plays the game */

[* playerl wins the game after 5 guesses*/
player_win (&playerl, 5);

LAutomatically called by the compiler.

University of lllinois at Urbana-Champaign

57

ECE 190 Introduction to Computing Systems Week 14

Let’s recreate the player with a C++ class:

class player_t

{

public:
void player_win (int num_guesses); [* player_t* argument
is implicit */
private:
char* name; /* player login name */
char* password; [* cleartext password */
int num_played; /* number of games we have played */

int win_guesses [13]; /* number of guesses it took to win */
double win_percent; [* percent of times we have won */

bi

In C++ theplayer_t* argument is implicit when we call the ayer_win function. We have
written the following inside the class:

void player_win (int num_guesses); [* player_t* arg is implicit */

The function above is calledr@thod, which means that the first argument is implicit and
its type is a pointer to this class. A method operates on the object that calls it.

Let's see how to use the C++ class:

player_t* p; [* pointer to a player class object 2 %
/* some code to play the game */
p->player_win (5); [* player wins after 5 guesses */

Now let’s write the definition foplayer_win:

int player_t::player_win (int num_guesses)
{
this->win_guesses|[this->num_played] = num_guesses;
this->win_percent = ((this->win_percent * this->num_played)+1)
/(this->num_played+1);
this->num_played++;

}

Theplayer_t followed by two colons above means that this method is a member of the
player_t class. This notation is callestoping and you must provide the correct scoping
when writing C++ definitions. Thethis” pointer above is an implicit pointer to the object
that called the method, in this caselayer_t*. For example, in the above code we have

2This isn't quite right because the memory has not been allocated for it and it hasn’t been initialized by
the constructor. For now assume that those things have been done.

University of lllinois at Urbana-Champaign

Week 14 Introduction to Computing Systems ECE 190

p->player_win(5); In which case this” would be the same as Since it is somewhat
cumbersome to always writetlis”, C++ allows you to leave it out inside the definition,
and the compiler will automatically fill it in. The definition fenayer_win then becomes:

int player_t::player_win (int num_guesses)

{
win_guesses [num_played] = num_guesses;
win_percent = ((win_percent * num_played)+1l)/(num_played+1);
num_played++;

14.2 Constructor and Destructor

C++ allows one to write code that is run whenever a new object is created or destroyed. This
code is called theonstructoranddestructor respectively. For example, we might want to
initialize all of the player structure values in oplrayer_t class, so we add a constructor
and destructor to our class

class player_t
{
public:
player_t (); [* constructor */
“player_t (); [* destructor */

void player_win (int num_guesses); [* player_t* argument
is implicit */
private:
char* name; /* player login name */
char* password; [* cleartext password */
int num_played; /* number of games we have played */

int win_guesses[13]; /* number of guesses it took to win */
double win_percent; [* percent of times we have won */

3The C++ compiler will automatically create a constructor and destructor if you do not specify one.

University of lllinois at Urbana-Champaign

59

ECE 190 Introduction to Computing Systems Week 14

[* Constructor
* We initialize the values and also allocate dynamic
* memory for the name and password using the new operator (see
* description of new below)
*/
player_t::player_t ()
{
num_played = 0;
for (int 1=0; 13 > 1i; 1i+4++){
win_guesses[1i] = 0;
}

win_percent = 0;

name = new char[10]; /* dynamic memory for 9 char string + NULL */
password = new char[10];

}

/* Destructor

* We need to deallocate the dynamic memory that was created in

* the constructor so we don’'t have any memory leaks

*/

player_t:: " player_t ()

{
delete[] name; /* free dynamic memory allocated in constructor */
delete[] password;

}

Now, whenever we create a newayer_t object, the constructor will get called by the
compiler, and the object will be initialized. The initialization will zero out all of the fields
and allocate dynamic memory for theme andpassword strings. The destructor is then
called by the compiler when the object needs to be destroyed. The destructor will then free
the dynamic memory that was initially allocated by the constructor. For example, consider
the following function:

void play_round ()

{
player_t playerl; [* calls player_t constructor implicitly */
player_t player2; [* calls player_t constructor implicitly */

/* some code to play the game */
}

Theplay_round function declares two local variablesiayerl andplayer2. The com-
piler inserts code to call thelayer_t constructor when each of these local variables is

University of lllinois at Urbana-Champaign

Week 14 Introduction to Computing Systems ECE 190

created at the start of the function. After the function has ended, the local variables are no
longer needed; before the function returns to the caller, the compiler inserts code to call the
player_t destructor on thelayer1 andplayer2 objects. Note that in this case the calls to

the constructor and destructor wemgplicit and taken care of by the compiler.

14.3 The New and Delete Operators

Rather than usingalloc andfree, we can allocate dynamic memory using the and
delete Operators. The operators also provide support for calling the obmt'structor
anddestructor The new operator callsialloc followed by the constructor; theelete
operator calls the destructor followed byee.

14.4 Data Inheritance

C++ also provides data inheritance. This can be useful when creating objects that share
information. We say that the data is inherited. Consider the illustration in Figure 14.1.

reference_t

author_list

title

year

next

/ N

book_t paper_t
publisher related_list

address pages

ISBN month

VRN

/

N

textbook _t series_t article_t conf_paper_t
topic editor journal conf_name
student_level series_name volume place
number ISBN
spec_topic

Figure 14.1: Data Inheritance

University of lllinois at Urbana-Champaign

61

62

ECE 190 Introduction to Computing Systems Week 14

At the top of 14.1 we have geference_t, Which includes anwuthor_list, title, year,

and anext pointer to the nexteference_t. However, we also have books and papers,
for which we want to store more information. For a book, we want to haveuhe sher,
address, andisen. Furthermore, an academic paper should have different information such
as a list of related papers, the number of pages, and the month it was written. Likewise,
we have textbooks and series, which contain book and reference information in addition to
new textbook and series-specific information.

How can we make this abstraction work in C++? The answer is that classes in C++ can in-
herit other classes. As a result a class hierarchy is createduptrclassebeing “above”

a class andubclassebeing “below” the class. If we just created@ference_t class only

the data in Figure 14.2 would be included. However, if we create ges_t, it will be laid

out as shown in Figure 14.3.

series_t

author_list

title

reference_t

r > - year
author_list
X next
title :
publisher
year
address
next
ISBN
Figure 14.2: referencelayout editor

series_name

Figure 14.3: serieslayout

Suppose we create a functiomid print_cite(); thatis defined in theeference_t class.
What happens if we do the following:

series_t* s; /* assume memory has been allocated and initialized */
s->print_cite ();

The above will work even though we are calling-@erence_t method on a&eries_t
object. The reason is that conversion to superclass is automatic in C++. Notice how
points to the same data as the pointéw thereference_t Object. When aeries_t object
callsprint_cite, theprint_cite function simply ignores all the data afterxt.

University of lllinois at Urbana-Champaign

Week 14 Introduction to Computing Systems ECE 190

14.5 Thestatic keyword

Thestatic keyword means that the function is not a method and therefore is not associated
with an instance of a class. For example:

class reference_t
{
public:
static reference_t* find_author (const char* find);
private:
author_list* author_1list;
char* title;
int year;
reference_t* next;

bi

When callingfind_author, we do not want to call it on a specifieference_t object, but
rather want to search the list efference_t objects for a certain author.

On the other hand, the following function should be a method because it needs to operate
on a specific reference:

int has_author (const char* find);
r->has_author ("Lumetta"); /* check object to see if Lumetta is the
author */

University of lllinois at Urbana-Champaign

63

64

ECE 190 Introduction to Computing Systems Week 14

14.6 Virtual functions (Functional Inheritance)

What if we are in the middle of creating our subclasses, but don’'t know how many sub-
classes we are going to create or are in the middle of creating them? How can we write
a function to print all the information about each of our objects? The solutigitisal

functions

virtual void print_all_cites();

reference_t*

Iy

r->print_all_cites ();

reference_t’s virtual

function table

function a

3

reference_t object

book_t’s virtual
function table

function b

print_all_cites

reference _t
virtual table pointer

3

book_t object

function a

function b

function_d

reference_t data

book_t
virtual table pointer

print_all_cites

function_d

reference_t data

reference_t object

reference t
virtual table pointer

book_t
function

book_t data

pointers

book_t object

reference_t data

book_t
virtual table pointer

reference_t data

book_t data

Figure 14.4: Virtual Functions

Note that each class in Figure 14.4 has a virtual function table that contains pointers to func-
tions. One of the functions in the ference_t virtual function table isrint_all_cites.
Thebook_t virtual function table inherits thesference_t virtual functions. One thing we

can do is replace therint_all_cites function pointer inbook_t’s virtual function table

with a pointer to another function. For example, we could replace
reference_t::print_all_cites in the book_t virtual function table on the right with a
function pointer to a new functiosbok_t: :print_all_cites. Now if we do

book_t* b;
b->print_all_cites ();

University of lllinois at Urbana-Champaign

Week 14 Introduction to Computing Systems ECE 190

thebook_t::print_all_cites function will be called instead of the
reference_t::print_all_cites function. How exactly does this work? As can be seen
from Figure 14.4, each object has an implicit field inserted by the compiler that points to
its virtual function table. Foreference_t objects, the pointer refers to theference_t
virtual function table, while fomook_t objects, the pointer refers to theok_t virtual
function table. When theook_t object calls theorint_al1_cites function, the address

of the function is looked up by following the pointer from thek_t object to the virtual
function table. From the virtual function table, we can find the pointer to the function we
want to invoke, which igrint_all_cites in this case.

class reference_t
{
public:
void print_reference_cites()
{
printf ("Title: %s\n", title);
printf ("Year: %d\n", year);
}
virtual void print_all_cites /() r* (1) *
{
print_reference_cites ();
}
private:
author_list* author_1list;
char* title;
int year;
reference_t* next;

bi

class book_t : public reference_t
{
public:
virtual void print_all_cites(); I (2) *

{
print_reference_cites (); [* inherited method from
reference_t class */
printf ("Publisher: %s\n", publisher);
printf ("ISBN: %d\n", ISBN);

private:
char* publisher; [* publisher name */
char* address; /* publisher’s address */
double ISBN; /* ISBN number */

University of lllinois at Urbana-Champaign

65

ECE 190 Introduction to Computing Systems Week 14

The code above defines theference_t class with the virtual functioprint_all_cites.
Thebook_t class is a subclass (derived class) of the=rence_t class, which is indicated
by ": public reference_t".* These class definitions tell the compiler that the virtual
function table for theook_t class should contain a function pointer to the
book_t::print_all_cites function rather than theeference_t::print_all_cites func-
tion. Looking at Figure 14.4, this means that th&erence_t virtual function table on the
left will have a pointer to the function defined lpy) for print_all_cites, and theook_t
virtual function table on the right will have a pointer to the function defined byfor
print_all_cites.

What will each print if we call it?

reference_t* r;

r->print_all_cites();

This will call the function defined by1) and print the title and the year.
book_t* b;

b->print_all_cites ();

This will call the function defined by2) and print the title, year, publisher, and ISBN.

You may wonder why therint_reference_cites method exists. The reason is that only
public members of a class are inherited, which means thatdtie t subclass does not
have direct access tathor_list, title, year, andnext. However, since the
print_reference_cites method is public, theook_t subclass does have access to this
method®

4The public keyword precedingeference_t indicates that all of the public members of the
reference_t superclass will remain public in theook_t subclass. You can also use private to indicate
that public members of theeference_t superclass should become private inithek_t subclass.

5C++ also provides therotected access specifier, which is the sameasvate, except that subclasses
have access torotected members.

University of lllinois at Urbana-Champaign

Week 14 Introduction to Computing Systems ECE 190

14.7 C++ References

In C++ a reference is a pointer with implicit dereference. For example:

int val;
ints val_ref = wval; [* declare a reference, which

implicitly assigns the address of val */
val_ref = 10; /* same as val = 10 */

Why is this used? It is often used aperator overloading Operator overloading lets us
change the way a certain operator (+ - / &ét¢) behaves for a class. For example, if we
create a new class to represent a complex number calledex_t, we might want to do
the following:

complex_t x, vy, z;
zZ = X + y;

If we overload the addition operator (+), we can specify exactly how the class should be-
have when adding tweomplex_t objects® We would declare the overloaded function as
follows:

complex_t operator+(const complex_té& a, const complex_té& b);

The reference operator forces the compiler to pass in a pointer, so that the value passed in
can be modified by the overloaded function. However, in this example we do not need to
modify the argumentsa(andb) in order to implement the addition operator, so we use the
const keyword', which prevents the function from modifying the arguments passed in. The
advantage of passing argumentscbyst reference iS that less stack overhead is needed

for large object$.

6A complex number has both a real and imaginary part.

’Neveruse noneonst references outside of operator overloading because doing so will make the code
incredibly hard to read and understand; others that use your code will not be expecting the function arguments
they pass in to be able to be modified by the callee function.

8The extra time needed to indirectly access the value through a pointer may be greater than just copying
the values to the stack if the objects are small. However, the actual size of an object may be difficult to
determine, so the best solution is usually passingdmst reference.

University of lllinois at Urbana-Champaign

67

68

An Incomplete List of Advice for Sophomore System Builders

1. Take on a big project during your next few years.

2. Learn to use a debugger.

3. Don't put of f learning about tools (such as make, CVS, perl, etc...).
4. Avoid optimizing prematurely.

5. Build. Burn. Rebuild.

6. The best designers are the best testers and debuggers.

7. Good code is like good prose.

8. Take on a big team project during your next few years.

9. Don't be afraid to break things.

10. Turn drudge work into opportunities for invention.

