
ECE190 Exam 2, Spring 2007
Thursday 29 March

Name:

• Be sure that your exam booklet has 14 pages.

• The exam is meant to be taken apart!

• Write your name at the top of each page.

• This is a closed book exam.

• You may not use a calculator.

• You are allowed two 8.5× 11" sheet of handwritten notes.

• Absolutely no interaction between students is allowed.

• Show all of your work.

• Don’t panic, and good luck!

“ ’Tis pity if the case require ... We speak the literal ...”
—R. Frost

Problem 1 20 points

Problem 2 15 points

Problem 3 25 points

Problem 4 20 points

Problem 5 20 points

Total 100 points

Name: 2

Problem 1 (20 points): Short Answers

Please answer concisely. If you find yourself writing more than a few words or a simple drawing, your answer
is probably wrong.

Part A (6 points): Variable ‘X’ is stored in memory location with label ‘X’. Write LC-3 assembly code
to place the value of each of the C expressions into R0, assuming that the memory location of ‘X’ is within
a 9-bit offset. Each of your answers should be a single LC-3 instruction.

i. (2 points) X

ii. (2 points) &X

iii. (2 points) *X

Part B (4 points): When compiling C for an LC-3 processor, how many memory locations are needed
to represent a single variable of each of the following types?

i. (2 points) float

ii. (2 points) float*

Name: 3

Problem 1, continued:

Part C (5 points): Write the output of the program below.

int main ()

{
int i, j, k;

j = 0;

i = 7;

k = (j++ && ++i);

printf ("%d %d %d\n", i, j, k);

}

Part D*** (5 points): Certain instruction set architectures, such as x86, use variable-length instruction
encodings, such that some instructions require only a byte, while others require more than one byte. In
particular, conditional branches can take short (say, two-byte) forms if the branch target is nearby, or long
(say, four-byte) forms if the branch target is more distant.

In terms of the two-pass assembly process discussed in class and in the textbook, explain why such variability
can pose a problem for an assembler.

Name: 4

Problem 2 (15 points): Systematic Decomposition

As you may already know, a number in base 10 is divisible by nine if and only if the sum of its digits are also
divisible by nine. For example, consider the number 729. Since 7+2+9 = 18 (which is divisible by nine), 729
itself must be divisible by nine. Similarly, 1857382992 is divisible by 9, since 1+8+5+7+3+8+2+9+9+2 =
54, and 5 + 4 = 9.

In this problem, you will implement an algorithm that applies this test to check whether a NUL-terminated
ASCII string of digits representing a very large decimal number is divisible by 9.

For simplicity, you will leverage the associativity of addition by recognizing that the order of subsequent
additions is not important to the final answer, allowing you to completely process each digit into a running
sum before moving on to the next digit.

With “823436,” for example, you start with 8, then add 2 to obtain 10. Before moving on to the third digit,
however, you break 10 into 1 and 0 and add them up to obtain 1. After adding 3, the running sum of 4
requires only one digit, so we can go ahead and add the 4 from the string to obtain 8. Again, only a single
digit, so we add the 3 to obtain 11. Now we again break the 11 into 1 and 1 and add them to obtain 2 before
processing the final digit. Finally, adding 6 to our running sum of 2 gives 8, which is not divisible by 9.

It is important to realize that the process just described is entirely equivalent (but much easier to automate!)
than adding 8 + 2 + 3 + 4 + 3 + 6 to obtain 26, then repeating the process to obtain 8.

The flow chart below is used for the problem on the next page.

Y

START

CONVERT FIRST
DIGIT TO BINARY

PROCESS
ANOTHER DIGIT

POINT TO
NEXT DIGIT

==0?
SUM

PRINT INDIVISIBLE
BY NINE MESSAGE

DONE

PRINT ERROR
MESSAGE

DONE?
ALL

A

B

N

Y

Y

NN

Name: 5

Problem 2, continued:

In Parts A through C, you must complete the systematic decomposition of the given problem. Assume
that all non-NUL characters in the string provided are ASCII digits (0 through 9, encoded as x30 through
x39).

Part A (2 points): Write a description of the test to be made in the box marked “A” in the flow chart
on the previous page.

Part B (2 points): Write a description of the task to be performed in the box marked “B” in the flow
chart on the previous page.

Part C (8 points): Decompose the double-lined box marked “PROCESS ANOTHER DIGIT” in the
flow chart on the previous page such that each task or test can be accomplished with individual LC-3
instructions (not counting branches). Hint: In your code, you should keep the running sum between 0 and
8 after processing each digit. Note that sums of 0 and 9 are equivalent for the human-based testing process.

Part D*** (3 points): A friend suggests that you could just use a running sum from 1 to 9 and check
whether the final sum is equal to 9 instead of 0. What strings would produce inappropriate results with such
a change?

Name: 6

Problem 3 (25 points): I/O, Assembly, and C

Part A (10 points): One of your TAs has implemented a new storage device for ECE 395 and needs
you to write a simple interface in LC-3 assembly to write to the device.

The device has a status register that is mapped into memory location xFE10. The device signals that it is
ready to receive data by setting the most significant bit of this register, indicated by S in the figure below.

S

15

offset

3 0

unused

14 4

The device reads data by maintaining an array of 16 data registers. These are memory-mapped registers; the
first register is mapped to xFE12, the next is mapped to xFE14, and so on, with each data register mapped
two locations away from the previous one.

When the device signals that it is ready to receive data, it places a four-bit offset into bits [3:0] of its status
register, as shown in the diagram above. These bits are an offset into the array of data registers; thus, an
offset of 0 corresponds to the first data register, and an offset of 15 corresponds to the last data register.

You will write the STORE DATA subroutine. The caller will place the data to be written in R0 before
calling your subroutine. Your routine must wait until the device is ready, then store the contents of R0 to
the data register indicated by the offset field. You may not assume that unused bits are equal to zero. You
may assume that R0, R1, R2, and R3 are caller-saved.

Write your subroutine below. Some helpful constants, which you may use freely, have been provided for you.

STORE DATA ; subroutine that you must write

RET

STATUS ADDR .FILL xFE10

Name: 7

Problem 3, continued:

The following LC-3 assembly code was generated by compiling the C function int my op (int value). The
canonical LC-3 stack frame (activation record) format appears in the diagram to the right.

; code to set up stack frame and save registers omitted

AND R0, R0, #0

STR R0, R5, #-1

ADD R0, R0, #1

STR R0, R5, #0

LOOP LDR R0, R5, #0

BRz MORE FUN

LDR R1, R5, #4

AND R3, R3, #0

AND R2, R0, R1

BRz FUN

ADD R3, R3, #1

FUN LDR R0, R5, #-1

ADD R0, R0, R3

STR R0, R5, #-1

LDR R0, R5, #0

ADD R0, R0, R0

STR R0, R5, #0

BRnzp LOOP

MORE FUN LDR R0, R5, #-1

STR R0, R5, #3

; code to restore registers and tear down stack frame omitted

LC−3 stack frame format

lin
ka

gereturn address

return value

prev. frame ptr

local variables

parameters

R5

Part B (10 points): Based on the LC-3 assembly code above, fill in the body of the C function below.

int my op (int value)

{

}

Part C (5 points): What does this function do?

Name: 8

Problem 4 (20 points): C and Stack Frames

This question focuses on the program below, and particularly on the stack frames (also called activation
records) that are used by each function in the program.

Consider the following pair of C functions.

int bar (int x, int y)

{
return ((x - y) * (x - y)); /* line A */

}

int foo (int a)

{
int b, c; /* line B */

printf ("Enter input: ");

scanf ("%d", &b); /* line C */

c = a - b;

a = bar (b, c);

return (a + b + c); /* line D */

}

int main ()

{
int q = foo (5);

printf ("%d\n", q);

return 0;

}

The program is run. When prompted for input, the user types “3”. For both parts of this question, you are
asked to fill in a diagram to show the stack frames (activation records) for all appropriate functions.

The diagrams are on the following two pages.

Name: 9

Problem 4, continued:

Part A (12 points): Using the diagram, fill in the state of the stack just before line A executes.

The stack frame for the main function is shown at the bottom of each diagram, and a canonical frame
diagram was provided in Problem 3 of this exam. During execution of main, the stack pointer R6=xBFF0,
and the frame pointer R5=xBFF0.

Draw arrows to indicate the values of R6 and R5 at the point of program execution just described. For each
memory location included in the stack (i.e., between the stack pointer and the bottom of the figure), label
the location with the type of information and the value stored there. If a memory location’s value cannot

be known, put a question mark by the description, e.g., “x=?”.

Only draw current activation records. If a function has already returned after being called, do not draw its
activation record. Do not mark or label any locations above the stack pointer, even if you know

the values in those locations!

The address of the JSR bar instruction in foo is x3056.

xBFE3

(n
o

pa
ra

m
et

er
s)

return value = _______________

return address =

prev. frame ptr =

local var q = ________________

xBFF3

xBFF2

xBFF1

xBFF0

xBFEF

xBFEE

lin
ka

ge

xBFED

xBFEC

xBFEB

xBFEA

xBFE9

xBFE8

xBFE7

xBFE6

xBFE5

xBFF7

x4322

R6

R5

xBFE4

m
ai

n’
s

st
ac

k
fr

am
e

Name: 10

Problem 4, continued:

Part B (8 points): Using the diagram, fill in the state of the stack just after line D executes, i.e.,
just before foo’s stack frame is torn down and the function returns.

The stack frame for the main function is shown at the bottom of each diagram, and a canonical frame
diagram was provided in Problem 3 of this exam. During execution of main, the stack pointer R6=xBFF0,
and the frame pointer R5=xBFF0.

Draw arrows to indicate the values of R6 and R5 at the point of program execution just described. For each
memory location included in the stack (i.e., between the stack pointer and the bottom of the figure), label
the location with the type of information and the value stored there. If a memory location’s value cannot

be known, put a question mark by the description, e.g., “x=?”.

Only draw current activation records. If a function has already returned after being called, do not draw its
activation record. Do not mark or label any locations above the stack pointer, even if you know

the values in those locations!

xBFE3

(n
o

pa
ra

m
et

er
s)

return value = _______________

return address =

prev. frame ptr =

local var q = ________________

xBFF3

xBFF2

xBFF1

xBFF0

xBFEF

xBFEE

lin
ka

ge

xBFED

xBFEC

xBFEB

xBFEA

xBFE9

xBFE8

xBFE7

xBFE6

xBFE5

xBFF7

x4322

R6

R5

xBFE4

m
ai

n’
s

st
ac

k
fr

am
e

Name: 11

Problem 5 (20 points): C Programming

Fill in the missing code and answer the following questions. Some code has been provided for you. Each
answer should be at most a few lines of code; rethink your answer if you are writing more than a few lines.

Part A (4 points): The function below does not perform as expected.

/* assuming that num >= 0 and mult > 0, return num rounded down to the nearest multiple of mult */

int round down (int num, int mult)

{
return (mult * num / mult);

}

What does the function really return? A small change will fix the function. Make the change.

Part B (4 points): Fill in the first argument to make the function work as expected.

/* assuming that num >= 0 and mult > 0, return num rounded up to the nearest multiple of mult */

int round up (int num, int mult)

{

return round down (, mult);

}

Part C (6 points): Fill in the body of this function that rounds the number num to the nearest multiple
of mult. For example:

round (7, 4) should return 8.
round (6, 4) should return 8 as well (round midpoints up).
round (5, 4) should return 4.

You must call the functions round up and round down in your answer. Assume that they work as described.

/* assuming that num >= 0 and mult > 0, return num rounded to the nearest multiple of mult */

int round (int num, int mult)

{
int answer;

if ((num % mult) <) {

} else {

}
return answer;

}

Name: 12

Problem 5, continued:

Your wonderful TAs advocate a new grading function that rounds all grades up to the nearest letter grade!
They write a test program to try it out.

int grade student1 (int grade)

{
grade = round up (grade, 10);

return grade;

}

int grade student2 (int* grade)

{
*grade = round up (*grade, 10);

return *grade;

}

int main ()

{
int s1 = 89;

int s2 = 77;

int s3 = 54;

int s4 = 42;

int grade;

grade = s1;

grade student1 (grade);

s1 = grade;

grade = s2;

s2 = grade student1 (grade);

s2 = grade;

grade = s3;

s3 = grade student2 (&grade);

s3 = grade;

grade = s4;

grade student2 (&grade);

s4 = grade;

printf ("s1: %d s2: %d s3: %d s4: %d\n", s1, s2, s3, s4);

return 0;

}

Part D (6 points): Write the program’s output.

Name: 13

Use this page as scratch paper.

LD

LDI

LDR

LEA

NOT

ST

STI

STR

ADD

ADD

AND

AND

BR

JMP

JSR

TRAP

0001 DR SR1 0 00 SR2

0001 SR1 1

000

imm5

0101 SR1 0 00 SR2

0101 SR1 1 imm5

0000 pzn PCoffset9

1100 BaseR 000000

0100 1

DR

DR

DR

PCoffset11

1111

DR ← SR1 + SR2, Setcc

ADD DR, SR1, SR2

DR ← SR1 + SEXT(imm5), Setcc

ADD DR, SR1, imm5

DR ← SR1 AND SR2, Setcc

DR ← SR1 AND SEXT(imm5), Setcc

AND DR, SR1, SR2

AND DR, SR1, imm5

BR{nzp} PCoffset9

((n AND N) OR (z AND Z) OR (p AND P)):
PC ← PC + SEXT(PCoffset9)

JMP BaseR

PC ← BaseR

R7 ← PC, PC ← PC + SEXT(PCoffset11)

JSR PCoffset11

R7 ← PC, PC ← M[ZEXT(trapvect8)]

TRAP trapvect8

0010 PCoffset9DR

1010 PCoffset9DR

0110 offset6

1110 PCoffset9DR

DR BaseR

1001 111111DR SR

0011 PCoffset9SR

1011 PCoffset9SR

0111 offset6SR BaseR

LD DR, PCoffset9

LDI DR, PCoffset9

LDR DR, BaseR, offset6

LEA DR, PCoffset9

NOT DR, SR

ST SR, PCoffset9

DR ← M[PC + SEXT(PCoffset9)], Setcc

DR ← M[M[PC + SEXT(PCoffset9)]], Setcc

DR ← M[BaseR + SEXT(offset6)], Setcc

DR ← PC + SEXT(PCoffset9), Setcc

DR ← NOT SR, Setcc

M[PC + SEXT(PCoffset9)] ← SR

M[M[PC + SEXT(PCoffset9)]] ← SR

M[BaseR + SEXT(offset6)] ← SR

STI SR, PCoffset9

STR SR, BaseR, offset6

NOTES: RTL corresponds to execution (after fetch!); JSRR not shown

0000 trapvect8

