
ECE190 Exam 2, Fall 2008
Thursday 30 October

Name:

• Be sure that your exam booklet has 13 pages.

• The exam is meant to be taken apart!

• Write your name at the top of each page.

• This is a closed book exam.

• You may not use a calculator.

• You are allowed TWO 8.5× 11" sheets of handwritten notes.

• Absolutely no interaction between students is allowed.

• Challenging problems are marked with ***.

• Show all of your work.

• Don’t panic, and good luck!

“...if rationality were the criterion for things being allowed to exist,

the world would be one gigantic field of soya beans!”

—from the play Jumpers by Tom Stoppard

Problem 1 20 points

Problem 2 15 points

Problem 3 25 points

Problem 4 20 points

Problem 5 20 points

Total 100 points

Name: __ 2

Problem 1 (20 points): Short Answers

Please answer concisely. If your answer requires more than a few words or a simple figure, it is probably
wrong.

Part A (5 points): Consider the following C function.

int mystery ()
{
 int x = 1;
 int y = 10;

 do {
 y = y + x;
 if (4 < x) {
 break;
 }
 x = x * 2;
 } while (20 > y);
 printf ("%d\n", y); /* A(i) refers to this line. */
 return x; /* A(ii) refers to this line. */
}

i) What number does the call to printf in the mystery function output to the display?

ii) What value does the mystery function return?

Part B (5 points): Consider the C code snippet below.

int a = 10;
int b = 5;
int c = 10;

c = (a++) + (--b) + c;

Write the values of the three variables after all of the assignments have completed.

a ___________ b ___________ c ___________

Name: __ 3

Part C (5 points): Consider the following C program.

#include <stdio.h>

int glob = 42;

void fn ();

int main ()
{
 double mine = 3.8;
 printf ("glob=%d\n", glob);
 fn ();
 return 0;
}

void fn ()
{
 glob = mine;
 printf ("glob=%d\n", glob);
}

The code contains a single error. Explain the error.

Part D (5 points): Most functions require a specific number of arguments. A few, such as scanf, take a
variable number of arguments. In the C declaration below, the ellipsis (“…”) following the first argument
indicates that a variable number of additional arguments can be passed.

void variable_args (int num_args, ...);

For the variable_args function, the num_args argument indicates the number of additional
arguments. For example, the call variable_args (2, 4, 5) indicates that two additional
arguments (4 and 5) are being passed.

When a compiler generates assembly code for a call to the variable_args function, should the
num_args argument be pushed first or last (or does it not matter, if all compilers are required make the
same choice)? Explain your answer.

Name: __ 4

Problem 2 (15 points): Assemblers and Assembly Language

This exam you are now taking was written by a program outputting the text to the console and redirecting
that to a text file (think of comparisons you made for MP2). The first function we wrote was HEADER,
which is shown below. There are no typographical errors in the code.

 .ORIG x3000
MAIN LEA R1,TABLE
 JSR HEADER
 LEA R0,NICE
 HALT
NICE .STRINGZ "Good Luck!"

HEADER ST R7,TEMP
 LDR R0,R1,#0
 BRz DONE
 ADD R1,R1,#1
 PUTS
 LD R0,LINEFEED
 OUT
 BRnzp HEADER
DONE LD R7,TEMP
 RET

TEMP .BLKW #1
LINEFEED .FILL x0A
TABLE .FILL FIRST ; address of first string
 .FILL SECOND ; address of second string
 .FILL x0000
FIRST .STRINGZ "ECE 190"
SECOND .STRINGZ "Midterm 2"
 .END

Part A (8 points): Fill out the symbol table below as it would appear after the first pass of the LC-3
assembler. Some entries have been given. Note that the symbol entries are NOT in order of
appearance in the code.

Part B (7 points): Show the output of the program and describe the program’s behavior.

Symbol Address Symbol Address
MAIN x3004

HEADER x301B

LINEFEED x301E

SECOND TEMP x3019

DONE

Name: __ 5

Problem 3 (25 points): Stacks and Subroutines

This problem pertains to the LC-3 assembly program shown on the left below.

 .ORIG x3000
 LEA R6,STACK
 LEA R1,STRING

 ADD R2,R1,#1
 R6
PART1 LDR R0,R1,#0
 BRz PART2
 ADD R6,R6,#-1
 STR R0,R6,#0
 ADD R1,R1,#2
 BRnzp PART1

PART2 LDR R0,R6,#0
 ADD R6,R6,#1
 OUT
 LDR R0,R2,#0
 OUT
 ADD R2,R2,#2
 LDR R0,R2,#-1
 BRnp PART2
 STACK
 HALT
MESSAGE .STRINGZ "SOOGTALUTARINNC!"
 .BLKW #20
STACK
 .END

Part A (7 points): Assuming that an LC-3 processor has executed the program until it first reaches the
instruction at PART2, fill in the contents of the stack diagram on the right above with one ASCII character
per location. Any location not changed by the program must be left blank. Note the position of the
STACK label, and draw an arrow from R6 in the diagram to the memory location to which it currently
points.

Part B (5 points): Write the output of the program.

Part C (6 points): The string provided in the program above has a length of 16 ASCII characters (not
counting NUL). For what string lengths does this program do something predictable?

Name: __ 6

Problem 3, continued:

Part D (5 points): Add necessary instructions before and after the main portion of the program to turn it
into an assembly subroutine (not a C subroutine—you do NOT need to create a stack frame/activation
record).

R1 holds the address of a string of appropriate length when the subroutine is called, and R6 points to a
stack with plenty of space left on top.

Your subroutine may not change the value of ANY register (except R7); R0, R1, R2, R3, R4, R5, and R6
must be returned with their original values at the end of your subroutine.

***(2 points): For full credit on this problem, add only instructions in your code (no new directives such
as .BLKW, no .FILL, no .STRINGZ, etc.).

STRINGSUB
; you may add code here

 ADD R2,R1,#1 ; this code was copied from previous page

PART1 LDR R0,R1,#0
 BRz PART2
 ADD R6,R6,#-1
 STR R0,R6,#0
 ADD R1,R1,#2
 BRnzp PART1

PART2 LDR R0,R6,#0
 ADD R6,R6,#1
 OUT
 LDR R0,R2,#0
 OUT
 ADD R2,R2,#2
 LDR R0,R2,#-1
 BRnp PART2

; you may also add code here

Name: __ 7

Problem 4 (20 points): I/O and Systematic Decomposition

While working at a summer internship, your boss informs you that the company has just bought several
LC-3 machines. Your company is working on a top-secret defense contract, and you are charged with
writing the password entry subroutine. As you might expect, the public version of the LC-3 operating
system cannot be used on a secure machine, so your code must interact directly with the devices.

The display registers on your machines behave identically to a standard LC-3 platform: DSR[15] indicates
that the display is ready to receive a new ASCII character; when the display is ready, writing an ASCII
character to DDR[7:0] delivers it to the monitor.

The keyboard registers are similar, but have been extended with a fingerprint scanner. KBSR now returns
one of the following bit patterns (only bits 15 and 3 are defined; others may hold any value):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 x x x x x x x x x x x 0 x x x no key, no fingerprint

0 x x x x x x x x x x x 1 x x x impossible

1 x x x x x x x x x x x 0 x x x keystroke—read KBDR

1 x x x x x x x x x x x 1 x x x fingerprint match

When a key is ready, the 8-bit ASCII code can be read from KBDR[7:0]. No additional data is available
when a fingerprint match is indicated by KBSR, thus KBDR holds no meaningful bits in that case.

For confidentiality reasons, every time the user types a password character, an asterisk (‘*’) must be echoed
to the monitor in place of the character actually typed, while the character typed must be recorded in
memory for later processing. After typing their password, a user swipes their finger over the scanner and,
if authorized to use the machine, produces a fingerprint match response from KBSR.

Part A (10 points): Complete the systematic decomposition of the password entry routine on the next
page by drawing missing arrows and filling in the boxes with brief labels in English and the symbolic
names listed below.

KBSR KBDR DSR DDR

READY — the ready condition (as read from either KBSR or DSR)
FINGER — the fingerprint match flag (as read from KBSR)

CHAR — a character read from the keyboard
PASSPTR — the address of the first location in a block of memory into which you must store the

password characters
ASTER — a register holding the ASCII character ‘*’

Note that labels in the form of LC-3 instructions earn no credit.

Name: __ 8

Problem 4, continued:

Part A answer diagram

NO

YES

START

YES

DONE

store CHAR
to PASSPTR

read KBSR

YES

Name: __ 9

Problem 4, continued:

Part B (10 points): Now write an LC-3 assembly subroutine to implement your password entry routine.

Some specifics for your subroutine:

• Device register addresses constants are provided for your use.
• R2 is an input to your subroutine and holds the address of the first location in the block of memory

into which you must store the password characters (PASSPTR in Part A).
• R3 is loaded for you with an asterisk (ASTER in Part A).
• You may use any register that you like for the character read from KBDR (CHAR in Part A),

reading the device registers, and so forth.
• You need not preserve any register values for this subroutine (all registers are caller-saved).

• You may NOT add other constants or space for storage.

PASS_ENTER
 LD R3,ASTERISK
 ; your code goes here

 RET
ASTERISK .FILL x002A
KBSR .FILL xFE00
KBDR .FILL xFE02
DSR .FILL xFE04
DDR .FILL xFE06

Name: __ 10

Problem 5 (20 points): C to LC-3

Consider the following C function.

int a;

int a_function (int arg)
{
 int x;
 int y;

 x = arg - 1;
 y = (x << 3);
 if (10 > y) {
 y = a + 20;
 }
 return y;
}

Remember that in the LC-3 calling convention, C programs use R4 to point to the beginning (base) address
of the global data section, R5 to point to the stack frame/activation record, and R6 to point to the top of the
stack.

Part A (2 points): For the code above, fill the blank spaces in the partial symbol table shown below.

Identifier Type Offset Scope
a int 2 global
x int 0 a_function
y int -1 a_function

arg int

Part B (6 points): Based on the symbol table, mark the locations of a, x, y and arg in the global data
section diagram on the left and the stack frame diagram on the right below. Do not mark other boxes.

previous frame ptr
return address
return value

R4

R5

R6

Name: __ 11

Part C (12 points): Fill in these five boxes with LC-3 assembly code for each of the statements listed at
the top of the column. Write each section independently of the others: your code may not rely on registers
loaded in a previous section (other than R4 and R5), and must update variables appropriately rather than
leaving results in registers. You may overwrite the values in R0 and R1 in your code for this problem.

x = arg - 1; y = (x << 3);

if (10 > y) – branch if FALSE to NOPE y = a + 20;

return y;
NOPE ; branch target for if test failure (above left)

Name: __ 12

Use this page for scratchwork.

LD

LDI

LDR

LEA

NOT

ST

STI

STR

ADD

ADD

AND

AND

BR

JMP

JSR

TRAP

0001 DR SR1 0 00 SR2

0001 SR1 1

000

imm5

0101 SR1 0 00 SR2

0101 SR1 1 imm5

0000 pzn PCoffset9

1100 BaseR 000000

0100 1

DR

DR

DR

PCoffset11

1111

DR ← SR1 + SR2, Setcc

ADD DR, SR1, SR2

DR ← SR1 + SEXT(imm5), Setcc

ADD DR, SR1, imm5

DR ← SR1 AND SR2, Setcc

DR ← SR1 AND SEXT(imm5), Setcc

AND DR, SR1, SR2

AND DR, SR1, imm5

BR{nzp} PCoffset9

((n AND N) OR (z AND Z) OR (p AND P)):
PC ← PC + SEXT(PCoffset9)

JMP BaseR

PC ← BaseR

R7 ← PC, PC ← PC + SEXT(PCoffset11)

JSR PCoffset11

R7 ← PC, PC ← M[ZEXT(trapvect8)]

TRAP trapvect8

0010 PCoffset9DR

1010 PCoffset9DR

0110 offset6

1110 PCoffset9DR

DR BaseR

1001 111111DR SR

0011 PCoffset9SR

1011 PCoffset9SR

0111 offset6SR BaseR

LD DR, PCoffset9

LDI DR, PCoffset9

LDR DR, BaseR, offset6

LEA DR, PCoffset9

NOT DR, SR

ST SR, PCoffset9

DR ← M[PC + SEXT(PCoffset9)], Setcc

DR ← M[M[PC + SEXT(PCoffset9)]], Setcc

DR ← M[BaseR + SEXT(offset6)], Setcc

DR ← PC + SEXT(PCoffset9), Setcc

DR ← NOT SR, Setcc

M[PC + SEXT(PCoffset9)] ← SR

M[M[PC + SEXT(PCoffset9)]] ← SR

M[BaseR + SEXT(offset6)] ← SR

STI SR, PCoffset9

STR SR, BaseR, offset6

NOTES: RTL corresponds to execution (after fetch!); JSRR not shown

0000 trapvect8

	p1.pdf
	p2to12.pdf
	LC3-with-RTL.pdf

