
ECE190 Exam 2, Fall 2006
Monday 30 October

Name:

• Be sure that your exam booklet has 13 pages.

• The exam is meant to be taken apart!

• Write your name at the top of each page.

• This is a closed book exam.

• You may not use a calculator.

• You are allowed TWO 8.5 × 11" sheets of notes.

• Absolutely no interaction between students is allowed.

• Show all of your work.

• More challenging questions are marked with ***.

• Don’t panic, and good luck!

“Adaptation of the a priori to the real world has no more originated from ‘experience’
than adaptation of the fin of the fish to the properties of water.”

—K. Lorenz, as quoted by N. Chomsky in Language and Mind, as quoted by O. Sacks in Seeing Voices

Problem 1 20 points

Problem 2 20 points

Problem 3 20 points

Problem 4 20 points

Problem 5 20 points

Total 100 points

Name: 2

Problem 1 (20 points): Short Answers

Please answer concisely. If you find yourself writing more than a few words or a simple drawing, your answer is
probably wrong.

Part A (5 points): Consider the following C function:

void /* returns nothing */
func (int x)
{

switch ((5 < x) - (3 > x)) {
case -1:

printf ("Too cold\n");
break;

case 1:
printf ("Too hot\n");
break;

case 0:
printf ("Just right\n");
break;

default:
printf ("Weird weather!\n");
break;

}
}

Fill in the blanks below to re-implement the function using if statements.

void /* returns nothing */
func (int x)
{

if () {
printf ("Too cold\n");

} else if () {
printf ("Too hot\n");

} else if () {
printf ("Just right\n");

} else {
printf ("Weird weather!\n");

}
}

Part B (5 points): Describe one advantage and one disadvantage of making a variable global rather than local to
a certain function in a C program. Hint: the disadvantages outweigh the advantages in practice, particularly for large
programs.

Name: 3

Problem 1, continued:

Part C (5 points): The C program below is intended to print the numbers from 10 down to 0 with one number per
line. What does it actually do, and how could you fix it with one simple change?

#include <stdio.h>

int
main ()
{

int x;

for (x = 10; 0 < x; --x) {
printf ("%d\n", x);

}
return 0;

}

Part D*** (5 points): Your friend is developing a magic 8-ball program for the LC-3. He shows you the following
assembly code:

LEA R1, SOURCE
LEA R2, DEST

LOOP LDR R0, R1, #0
STR R2, R0, #0
BRz DONE
ADD R1, R1, #1
ADD R2, R2, #1
BRnzp LOOP

DONE: LEA R0, DEST
TRAP x22 ; PUTS
TRAP x25 ; HALT

SOURCE .STRINGZ "\"My sources say no\""
DEST .BLKW #20
MYDATA .FILL x0FFF

Your friend complains that when he runs this code with his test cases, it never finishes executing (in other words, it
never reaches the HALT trap). Explain why. (Note that the two-character sequence \" inserts a single quotation mark,
ASCII character x22, into a string.)

Name: 4

Problem 2 (20 points): Systematic Decomposition to LC-3 Assembly

1 if printer is online
1 if printer is ready

15 014 13

unusedPSR xFE80

PDR xFE82
15 0

unused

8 7

char to print

wait for
printer

send one
character

update
variables

initialize
variables

save
registers

START

restore
registers

DONE

eight
chars
done?

R0 = temporary values
R1 = count of characters
 sent already
R3 = pointer to next
 character to send

register variables for trap routine

loop over characters

Y

N

Prof. Lumetta needs your help: a new printer device has been added to the LC-3, but he has not been able to write one
of the trap routines, and the next ECE190 assignment requires that trap routine! The trap routine in question sends
a sequence of eight characters stored in memory starting at R3 (an input value) to the printer. Before sending each
character to the printer, the trap routine must wait until both the online and ready bits of the PSR are equal to 1. The
character can then be written to PDR.

The figure above shows three things: on the left, a partial systematic decomposition for the trap routine (partial
because it requires more than one LC-3 instruction for each box); in the upper right, the addresses and pictures of the
new Printer Status Register (PSR) and Printer Data Register (PDR); in the lower right, the mapping from registers to
data values that you’ll need to use in the trap routine.

Part A (5 points): First protect the registers. The trap should preserve all register values. Fill in the code and
allocate storage as necessary below to accomplish this goal. Two data values have been provided for Parts B and C.
; save registers (FILL IN)

; initialize variables and loop over characters (Part C)

; restore registers (FILL IN)

RET ; DONE

; data needed for trap routine (FILL IN)

TRAP PSR .FILL xFE80

TRAP PDR .FILL xFE82

Name: 5

Problem 2, continued:

Part B (5 points): The next step is to decompose the “wait for printer” box to the level of individual LC-3
instructions. Before sending a character to the printer, the trap routine must wait until both the online and ready bits
of the PSR are equal to 1. Draw your answer as a flow chart with RTL or assembly inside each statement or test.
For example, you might label a test with “BR” and write N, Z, and P on the appropriate output arcs. Use the register
mapping shown in the figure (replicated below). Use data values from Part A (you should not need any others).

1 if printer is online
1 if printer is ready

15 014 13

unusedPSR xFE80

PDR xFE82
15 0

unused

8 7

char to print

wait for
printer

send one
character

update
variables

initialize
variables

save
registers

START

restore
registers

DONE

eight
chars
done?

R0 = temporary values
R1 = count of characters
 sent already
R3 = pointer to next
 character to send

register variables for trap routine

loop over characters

Y

N

Name: 6

Problem 2, continued:

Part C (8 points): You are now ready to write the main body of the code. Do so below. Remember that R3
initially points to the first of the eight characters to be sent, and that the others are in consecutive memory locations.

; save registers (Part A; NO NEED TO REWRITE)

; initialize variables (FILL IN; SEE REGISTER MAP FOR CONTENTS)

; all characters done? (FILL IN)

; wait for printer (FILL IN from Part B)

; send one character (FILL IN)

; update variables (FILL IN)

; restore registers, DONE, and data (Part A; NO NEED TO REWRITE)

Part D*** (2 points): The printer has a button that turns it online/offline under human control. Using the protocol
described, the printer must buffer one character even if the character is sent to PDR when the printer is offline. Explain
why this buffering is necessary for correct behavior even though your code checks for the online bit before writing to
PDR.

Name: 7

Problem 3 (20 points): The LC-3 Assembler

Consider the LC-3 program shown below. The numbers to the left are to help you answer the questions and are not
part of the program. Hint: what the program does is not important to the problem!

01 .ORIG x3000
02
03 INIT
04 LEA R0, START STR
05 JSR PRINT STR
06 LD R0, TEN
07 LEA R1, DATA B
08
09 STORE LOOP
10 STR R0, R1, #0
11 ADD R1, R1, #1
12 ADD R0, R0, #-1
13 BRp ST LOOP
14
15 LD R0, TEN
16 ADD R1, R1, #-1
17 AND R2, R2, #0
18
19 ADD LOOP
20 LDR R3, R1, #0
21 ADD R2, R3, R2
22 ADD R1, R1, #-1
23 ADD R0, R0, #-1
24 BRp ADD LOOP
25
26 STORE SUM
27 ST R2, RESULT
28 TRAP #25
29
30 PRINT STR
31 ST R7, SAVE R7
32 PUTS
33 LD R7, SAVE R7
34 RET
35
36 TEN .FILL #10
37 SAVE R7 .BLKW #1
38 DATA B .BLKW #10
39 START STR .STRINGZ "Starting..."
40 RESULT .FILL #0
41 .END

Label Address
INIT

STORE LOOP
ADD LOOP

STORE SUM
PRINT STR

TEN
SAVE R7
DATA B

START STR
RESULT

Part A (10 points): Fill in the addresses for the symbol table above as they would be generated by the assembler.

Part B (4 points): Write out the binary word that would be generated by the assembler for line 15 of the program.

Part C (6 points): Assuming that both passes of the assembler were to execute, indicate which line numbers result
in errors reported by the assembler, specify in which pass each error occurs, and briefly explain why each is an error.

Name: __ 8

Problem 4 (20 points): From C to LC-3 and Back Again

Part A (10 points): translate the C function below to LC-3 assembly instructions. The diagram of the
stack frame for the function call has been provided for you.

Translate the while and return statements
from the function body independently, with no
register values shared between sections. The
stack frame management and register save/store
has been done for you (not shown in figures).

char* find_char
(char* str, char a)
{
 char* strcpy = str;

 while(*strcpy != a){
 strcpy++;
 }
 return strcpy;
}

; create stack frame and save registers
…
; char* strcpy = str;
; DO NOT WRITE IN THIS BOX

; translation for
; return i;

; translation for while loop
;while(*strcpy != a) {
; strcpy++;
; }

; restore registers and tear down stack frame
…
; DO NOT WRITE IN THIS BOX

strcpy

prev. frame pointer
return address
return value

str

a

 stack frame for
 find_char

R6,R5

Name: __ 9

Problem 4, continued:

Given below is part of the LC-3 translation of a C function foo and part of the function foo itself. Also
given is the stack frame (activation record) for foo. Remember that memory addresses increase in the
direction of the arrow. Answer the questions below.

int foo (int a)
{
 int ans = 0;
 int i;
 for (i = a; 0 < i; i--) {

 /* body of loop written
 * by you in Part B
 */
 }
 return ans;
}

Part B (6 points): Which LC-3 instructions correspond to (give the instruction numbers shown in the
comments):

a. The initialization of the for loop?

b. The test part of the for loop?

c. The update (re-initialization) of the for loop?

Part C (4 points): Using the LC-3 translation of foo, write the body of the for loop here.

.
 .
 .
 AND R0, R0, #0 ;1
 STR R0, R5, #0 ;2
 LDR R0, R5, #4 ;3
 STR R0, R5, #-1 ;4
LOOP
 LDR R0, R5, #-1 ;5
 BRnz DONE ;6
 LDR R0, R5, #-1 ;7
 LDR R1, R5, #0 ;8
 ADD R1, R1, R0 ;9
 STR R1, R5, #0 ;10
 LDR R0, R5, #-1 ;11
 ADD R0, R0, #-1 ;12
 STR R0, R5, #-1 ;13
 BRnzp LOOP ;14

DONE
 LDR R0, R5, #0 ;15
 STR R0, R5, #3 ;16
 .
 .
 .

i

 ans

prev. frame pointer
return address
return value

a

stack frame for foo

R6

R5

Name: 10

Problem 5 (20 points): C and Stack Frames

This question focuses on the program below, and particularly on the stack frames (also called activation records) that
are used by each function in the program.

#include <stdio.h>

/* function declarations */
int bar (int a, int b);
int foo (int* p);

int bar (int a, int b)
{

int x = a + b;

if (0 < a) {
printf ("%d\n", a * b);

}
return x;

}

int foo (int* p)
{

*p = bar (-4, 11);
return 6;

}

int main ()
{

int x = 0;
int y;

y = foo (&x);
bar (x, y);
return 0;

}

Part A (3 points): When someone runs the program, what is the order of subroutine calls for the program, starting
from main? In other words, what is the sequence of JSR target over the whole program execution? Give a comma-
separated list, including only the main, foo, and bar functions.

main,

Part B (3 points): What, if anything, is printed by the program?

Name: 11

Problem 5, continued:

Part C (14 points): The stack frame for the main function is shown below. During execution of main, the stack
pointer R6=xBFEF, and the frame pointer R5=xBFF0.

Use the figure to draw the stack just after completion of the return statement in the bar function when it is called
from main, i.e., just before bar’s stack frame is torn down and the subroutine returns to main.

Draw arrows to indicate the values of R6 and R5 at the point of program execution just described. For each memory
location included in the stack (i.e., between the stack pointer and the bottom of the figure), label the location with the
type of information and the value stored there. If a memory location’s value cannot be known, put a question mark
by the description, e.g., “x=?”.

Do not mark or label any locations above the stack pointer, even if you know the values in those locations!

The address of the JSR bar instruction in main is x3040.

return value = _______________

return address =

prev. frame ptr =

local var x = ________________

local var y = ________________

xBFF3

xBFF2

xBFF1

xBFF0

xBFEF

xBFEE

lin
ka

ge

m
ai

n’
s

st
ac

k
fr

am
e

(n
o

pa
ra

m
et

er
s)

xBFED

xBFEC

xBFEB

xBFEA

xBFE9

xBFE8

xBFE7

xBFE6

xBFE5

xBFF7

x4322

R6

R5

Name: 12

Use this page for scratch paper.

LD

LDI

LDR

LEA

NOT

ST

STI

STR

ADD

ADD

AND

AND

BR

JMP

JSR

TRAP

0001 DR SR1 0 00 SR2

0001 SR1 1

000

imm5

0101 SR1 0 00 SR2

0101 SR1 1 imm5

0000 pzn PCoffset9

1100 BaseR 000000

0100 1

DR

DR

DR

PCoffset11

1111

DR ← SR1 + SR2, Setcc

ADD DR, SR1, SR2

DR ← SR1 + SEXT(imm5), Setcc

ADD DR, SR1, imm5

DR ← SR1 AND SR2, Setcc

DR ← SR1 AND SEXT(imm5), Setcc

AND DR, SR1, SR2

AND DR, SR1, imm5

BR{nzp} PCoffset9

((n AND N) OR (z AND Z) OR (p AND P)):
PC ← PC + SEXT(PCoffset9)

JMP BaseR

PC ← BaseR

R7 ← PC, PC ← PC + SEXT(PCoffset11)

JSR PCoffset11

R7 ← PC, PC ← M[ZEXT(trapvect8)]

TRAP trapvect8

0010 PCoffset9DR

1010 PCoffset9DR

0110 offset6

1110 PCoffset9DR

DR BaseR

1001 111111DR SR

0011 PCoffset9SR

1011 PCoffset9SR

0111 offset6SR BaseR

LD DR, PCoffset9

LDI DR, PCoffset9

LDR DR, BaseR, offset6

LEA DR, PCoffset9

NOT DR, SR

ST SR, PCoffset9

DR ← M[PC + SEXT(PCoffset9)], Setcc

DR ← M[M[PC + SEXT(PCoffset9)]], Setcc

DR ← M[BaseR + SEXT(offset6)], Setcc

DR ← PC + SEXT(PCoffset9), Setcc

DR ← NOT SR, Setcc

M[PC + SEXT(PCoffset9)] ← SR

M[M[PC + SEXT(PCoffset9)]] ← SR

M[BaseR + SEXT(offset6)] ← SR

STI SR, PCoffset9

STR SR, BaseR, offset6

NOTES: RTL corresponds to execution (after fetch!); JSRR not shown

0000 trapvect8

