
ECE190 Exam 1, Fall 2008
Thursday 25 September

Name:

• Be sure that your exam booklet has 9 pages.

• The exam is meant to be taken apart!

• Write your name at the top of each page.

• This is a closed book exam.

• You may not use a calculator.

• You are allowed one 8.5× 11" sheet of handwritten notes.

• Absolutely no interaction between students is allowed.

• Challenging problems are marked with ***.

• Show all of your work.

• Don’t panic, and good luck!

“...there would be no more wars, the nations were so economically interdependent.”

—S. Foster Damon, remembrance ca. 1912

Problem 1 20 points

Problem 2 20 points

Problem 3 10 points

Problem 4 25 points

Problem 5 25 points

Total 100 points
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Problem 1 (20 points): Short Answers 
 
Please answer concisely.  If you find yourself writing more than a few words or a simple drawing, your 
answer is probably wrong. 
 
Part A (5 points): Using an 8-bit 2’s complement data type, what is the smallest positive number that 
generates an overflow when added to itself? 
 
 
 
 
 
Part B (5 points): How many positive integers are represented in a 13-bit 2’s complement data type? 
 
 
 
 
 
Part C (5 points): Using one or more LC-3 instructions, implement a branch if positive (BRp) to an 
address outside the range of the branch instruction.  Assume that the address to which you want to branch is 
stored in R5.  Write your instruction(s) in binary.  Note: you may not need all the lines provided below. 
 
Address Instruction 
x3000: ______________________________ 
 
x3001: ______________________________ 
 
x3002: ______________________________ 
 
x3003: ______________________________ 
 
 
 
Part D (5 points): The current LC-3 memory contains a total of 1 Megabit (220 bits).  If we were to make 
the memory byte-addressable (a byte is 8 bits) without changing its size, and without changing the size of 
the instructions (16 bits), how many bits would be necessary in the following registers? 
 
 
MAR IR 
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Problem 2 (20 points): Logic Circuits 
 
Part A (3 points): Using exactly one logic gate whose inputs are not inverted, draw a logically equivalent 
circuit to the one pictured below.   
 

 
 
Part B (3 points): Using exactly one logic gate whose inputs are not inverted, draw a logically equivalent 
circuit to the one pictured below. 

 

 
 

Part C (6 points): Draw the necessary connections to implement a half-adder (an adder without a carry 
input) using the 2-to-1 decoder and the two NOR gates pictured below. 
 

 
 
Part D (8 points): Using three 2-to-1 multiplexers (shown to the left below), draw a circuit which 
performs the function of a 4-to-1 multiplexer with inputs: A0, A1, A2, A3, and select bits: S1, S0. 
 
 

 
 
 
 

2-to-1 Mux 
 
 
 
 
 
 
 
 
 Output 
 

S1    S0                 A0           A1           A2          A3 

4 
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Problem 3 (10 points): Memory  
In a typical memory, setting the write enable input (WE) to 1 causes all bits of the selected memory 
location to accept new values.  For a certain ECE445 (senior design) project, we need a 4-address, 3-bit 
addressable memory that allows us to write to each bit at a location separately. To do so, we hired a 
computer engineer from the University of Michigan.  
The design is done by modifying the 4-address, 3-bit, memory that we discussed in class. Except for the 
WE input, all inputs and outputs remain the same. More specifically, ADDR is a 2-bit input for address 
selection, Din is a 3-bit input for providing bits when writing to a memory location. 
As for the WE input, the modified memory structure no longer has a single WE input to all bits. Rather, 
when a location is selected, 3 WEout signals will independently determine if each bit in that location will 
be written. This modification has already been done by an Illinois student. 
The Michigan engineer proposes to construct a combinational logic that provides a nice external interface 
for using the memory. The logic translates a 4-bit WE external input signal into the internal 3-bit WEout 
signals as follows: 
WE is 4 bits wide and behaves as follows: 
WE [3:0] = 0001 => write to bit 0 only 
WE [3:0] = 0010 => write to bit 1 only 
WE [3:0] = 0100 => write to bit 2 only 
WE [3:0] = 1000 => write to all the bits 
WE [3:0] = 0000 => do not write to any of the bits 
WE [3:0] = other => treat as a read cycle 
 
Part A (6 points): For a first round of testing, we executed the six cycles shown on the left below.  
Assuming correct implementation and assuming that all the bits in the memory are initialized to 1, fill in 
the table on the right to reflect the final state of the memory (after the six cycles). 
 
Cycle # ADDR[1:0] WE[3:0] Din[2:0] 

1 00 0100 000 
2 10 1000 010 
3 10 0000 110 
4 01 0010 001 
5 11 0001 011 
6 00 1000 100 

 

 
address bit 2 bit 1 bit 0 

00    

01    

10    

11    

Part B (4 points): The memory designed by the Michigan alumnus passed the first test.  However, the 
next round of tests revealed some undesired behavior.  Examining his design, we found the following logic 
for generating the signals that specify whether or not each individual bit is written (WEout[2:0]). 

 
In 25 words or less, explain the undesired behavior. 
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Problem 4 (25 points): Finite State Machines 
 
A certain finite state machine implements a pattern recognition system that recognizes specific sequences 
of inputs. Each input represents a letter, such as A or B.  An input sequence can be written as a sequence of 
letters such as “ABAAABBBABA…”.  For this finite state machine, the output Z is 1 when an input 
sequence has an even number of A’s and an odd number of B’s.  Otherwise, the output Z is 0.  The states 
needed are named as follows: 
 
 SEE even number of A’s and even number of B’s 
 SEO even number of A’s and odd number of B’s 
 SOO odd number of A’s and odd number of B’s 
 SOE odd number of A’s and even number of B’s 
 
Part A (8 points): Draw a high-level finite state machine transition diagram for the system. States and 
state names have been drawn for you.  Add appropriate output values and all transition arcs.  Label arcs as 
either A or B.  
 
 
 
 
 
 

 
 
 
 
 
 
 
The circuit below shows an implementation of the finite state machine using two flip-flops and state 
representation (bits P1P0) given by SEE = 00, SEO = 01, SOO = 10, and SOE = 11.  The blocks labeled 1 and 2 
use the current state P1P0 and the inputs X1X0 to calculate the next state, N1N0.  The letter A is represented 
as X1X0=00, and the letter B is represented as X1X0=01. 
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Problem 4, continued: 
 
Part B (4 points): Based on the circuit below for Block 1, fill in the table for N0. 
 

 

 
P0 X1 N0
0 0  
0 1  
1 0  
1 1  

Part C (8 points):  Based on your answer to Part B and on the truth table for Block 2 (shown to the left 
below) fill in the next state table on the right for the FSM implementation.  Note that input X1X0=11 is not 
included in the table. 

 
P1 X1 X0 N1 
0 0 0 1 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 0 

 
P1 P0 X1 X0 N1 N0 
0 0 0 0   
0 0 0 1   
0 0 1 0   
0 1 0 0   
0 1 0 1   
0 1 1 0   
1 0 0 0   
1 0 0 1   
1 0 1 0   
1 1 0 0   
1 1 0 1   
1 1 1 0   

 
 
***Part D (5 points): The input bits X1X0=10 represent the letter C.  Explain in one sentence how you 
can use the next state table from Part C to verify that the letter C is handled correctly by the FSM 
implementation. 
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Problem 5 (25 points): The von Neumann Model

An LC-3 is about to perform an instruction FETCH.

The contents of the register file, PC, MAR, MDR, IR,

and part of memory are shown to the right.

You may wish to consult the last page of this exam, which

gives the LC-3 instruction set encoding and RTL.

Part A (8 points): On the lines below, write RTL

for the next four instructions to be executed by the

LC-3. For PC-relative addressing modes, write addresses

relative to PC rather than calculating the actual address

to be used, e.g., write “PC+x12” rather than adding the

two values for that instruction.

...

R0 xA5A5 x3A06 x6CBC

R1 x1000 x3A07 x1FF2

R2 x1298 x3A08 x0000

R3 x1981 x3A09 x0589

R4 x4345 x3A0A x2004

R5 x0BEE x3A0B x1221

R6 x3A0F x3A0C x1025

R7 xF025 x3A0D x09FD

x3A0E xF025

PC x3A0A x3A0F xFFF0

MAR x39A3 x3A10 x0000

MDR x0E66 x3A11 x2005

IR x0E66 x3A12 x0589

x3A13 x6CBC

...

Address RTL

Part B (6 points): Using hexadecimal notation, write the contents of the registers R0 through R7, PC,

MAR, MDR and IR after the LC-3 processes the first three instructions.

R0 PC

R1 MAR

R2 MDR

R3 IR

R4

R5

R6

R7

Part C (4 points): Using hexadecimal notation, write the contents of the PC, MAR and MDR after

the LC-3 processes one additional instruction after Part B, i.e., four instructions in all.

PC MAR

IR MDR

Part D (7 points): The instruction xF025 halts LC-3 execution (i.e., no further instructions are pro-

cessed after xF025). What are the contents of R0 and R1 when the LC-3 halts?

R0 R1
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Use this page for scratchwork.



LD

LDI

LDR

LEA

NOT

ST

STI

STR

ADD

ADD

AND

AND

BR

JMP

JSR

TRAP

0001 DR SR1 0 00 SR2

0001 SR1 1

000

imm5

0101 SR1 0 00 SR2

0101 SR1 1 imm5

0000 pzn PCoffset9

1100 BaseR 000000

0100 1

DR

DR

DR

PCoffset11

1111

DR ← SR1 + SR2, Setcc

ADD DR, SR1, SR2

DR ← SR1 + SEXT(imm5), Setcc

ADD DR, SR1, imm5

DR ← SR1 AND SR2, Setcc

DR ← SR1 AND SEXT(imm5), Setcc

AND DR, SR1, SR2

AND DR, SR1, imm5

BR{nzp} PCoffset9

((n AND N) OR (z AND Z) OR (p AND P)):
PC ← PC + SEXT(PCoffset9)

JMP BaseR

PC ← BaseR

R7 ← PC, PC ← PC + SEXT(PCoffset11)

JSR PCoffset11

R7 ← PC, PC ← M[ZEXT(trapvect8)]

TRAP trapvect8

0010 PCoffset9DR

1010 PCoffset9DR

0110 offset6

1110 PCoffset9DR

DR BaseR

1001 111111DR SR

0011 PCoffset9SR

1011 PCoffset9SR

0111 offset6SR BaseR

LD DR, PCoffset9

LDI DR, PCoffset9

LDR DR, BaseR, offset6

LEA DR, PCoffset9

NOT DR, SR

ST SR, PCoffset9

DR ← M[PC + SEXT(PCoffset9)], Setcc

DR ← M[M[PC + SEXT(PCoffset9)]], Setcc

DR ← M[BaseR + SEXT(offset6)], Setcc

DR ← PC + SEXT(PCoffset9), Setcc

DR ← NOT SR, Setcc

M[PC + SEXT(PCoffset9)] ← SR

M[M[PC + SEXT(PCoffset9)]] ← SR

M[BaseR + SEXT(offset6)] ← SR

STI SR, PCoffset9

STR SR, BaseR, offset6

NOTES: RTL corresponds to execution (after fetch!); JSRR not shown

0000 trapvect8
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