Hierarchical Dirichlet Processes

Presenters: Micah Hodosh, Yizhou Sun 4/7/2010

Content

- Introduction and Motivation
- Dirichlet Processes
- Hierarchical Dirichlet Processes
 - Definition
 - Three Analogs
- Inference
 - Three Sampling Strategies

Introduction

- Hierarchical approach to model-based clustering of grouped data
- Find an unknown number of clusters to capture the structure of each group and allow for sharing among the groups
 - Documents with an arbitrary number of topics which are shared globably across the set of corpora.
- A Dirichlet Process will be used as a prior mixture components
- The DP will be extended to a HDP to allow for sharing clusters among related clustering problems?

Motivation

- Interested in problems with observations organized into groups
- Let x_{ji} be the ith observation of group $j = x_j = \{x_{j1}, x_{j2}...\}$
- x_{ii} is exchangeable with any other element of x_{ii}
- For all j,k , \mathbf{x}_i is exchangeable with \mathbf{x}_k

Motivation

- Assume each observation is drawn independently for a mixture model
 - Factor θ_{ji} is the mixture component associated with x_{ji}
- Let $F(\theta_{ii})$ be the distribution of x_{ii} given θ_{ii}
- Let G_j be the prior distribution of $\theta_{j1}, \theta_{j2}...$ which are conditionally independent given G_i

$$\theta_{ji} \mid G_j \sim G_j$$

 $x_{ji} \mid \theta_{ji} \sim F(\theta_{ji})$

5

Content

- Introduction and Motivation
- Dirichlet Processes
- Hierarchical Dirichlet Processes
 - Definition
 - Three Analogs
- Inference
 - Three Sampling Strategies

The Dirichlet Process

- Let (Θ, β) be a measureable space,
 - Let G_0 be a probability measure on that space
 - Let $\mathbf{A} = (A_1, A_2, .., A_r)$ be a finite partition of that space
 - Let α_0 be a positive real number
- $G \sim DP(\alpha_0, G_0)$ is defined s.t. for all A :

 $(G(A_1),\ldots,G(A_r)) \sim \operatorname{Dir}(\alpha_0 G_0(A_1),\ldots,\alpha_0 G_0(A_r))$

Stick Breaking Construction

- The general idea is that the distribution G will be a weighted average of the distributions of a set of infinite random variables
- 2 infinite sets of i.i.d random variables
 - $\phi_k \sim G_0$ Samples from the initial probability measure
 - $\pi_k' \sim \text{Beta}(1, \alpha_0)$ Defines the weights of these samples

Stick Breaking Construction

•
$$\pi_{k}' \sim \text{Beta}(1, \alpha_{0})$$

• Define π_{k} as $\pi_{k} = \pi'_{k} \prod_{l=1}^{k-1} (1 - \pi'_{l})$
0 π_{1}' $1 - \pi_{1}'$ $1 - \pi_{1}'$ $\sum_{l=1}^{\infty} \pi_{k} = 1$

Stick Breaking Construction

- $\pi_k \sim \text{GEM}(\alpha_0)$
- These π_k define the weight of drawing the value corresponding to ϕ_k .

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

Polya urn scheme/ CRP

- Let each $\theta_1, \theta_2,...$ be i.i.d. Random variables distributed according to G
- Consider the distribution of θ_i , given $\theta_1, \dots, \theta_{i-1}$, integrating out G:

$$\theta_i \mid \theta_1, \dots, \theta_{i-1}, \alpha_0, G_0 \sim \sum_{\ell=1}^{i-1} \frac{1}{i-1+\alpha_0} \delta_{\theta_\ell} + \frac{\alpha_0}{i-1+\alpha_0} G_0.$$

Polya urn scheme

 $\theta_i \mid \theta_1, \dots, \theta_{i-1}, \alpha_0, G_0 \sim \sum_{\ell=1}^{i-1} \frac{1}{i-1+\alpha_0} \delta_{\theta_\ell} + \frac{\alpha_0}{i-1+\alpha_0} G_0.$

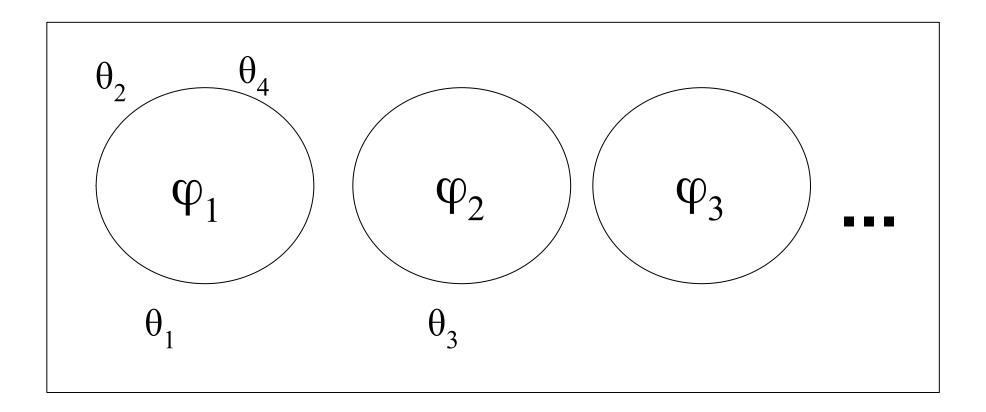
- Consider a simple urn model representation. Each sample is a ball of a certain color
- Balls are drawn equiprobably, and when a ball of color x is drawn, both that ball and a new ball of color x is returned to the urn
- With Probability proportional to α_0 , a new atom is created from G_0 ,
 - A new ball of a new color is added to the urn

Polya urn scheme

- Let $\phi_1 \dots \phi_K$ be the distinct values taken on by $\theta_1, \dots \theta_{i-1}$,
- If m_k is the number of values of $\theta_1, \dots, \theta_{i-1}$, equal to ϕ_k :

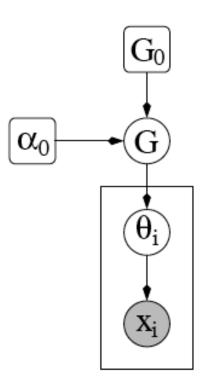
$$\theta_i \mid \theta_1, \dots, \theta_{i-1}, \alpha_0, G_0 \sim \sum_{k=1}^K \frac{m_k}{i - 1 + \alpha_0} \delta_{\phi_k} + \frac{\alpha_0}{i - 1 + \alpha_0} G_0.$$

Chinese restaurant process:



Dirichlet Process Mixture Model

• Dirichlet Process as nonparametric prior on the parameters of a mixture model:



$$\theta_i \mid G \sim G$$

 $x_i \mid \theta_i \sim F(\theta_i)$

Dirichlet Process Mixture Model

- From the stick breaking representation:
 - θ_i will be the distribution represented by ϕ_k with probability π_k
- Let z_i be the indicator variable representing which $\phi_k \theta_i$ is associated with:

 $\pi \mid \alpha_0 \sim \operatorname{GEM}(\alpha_0) \qquad \qquad z_i \mid \pi \sim \pi$ $\phi_k \mid G_0 \sim G_0 \qquad \qquad x_i \mid z_i, (\phi_k)_{k=1}^\infty \sim F(\phi_{z_i})$

Infinite Limit of Finite Mixture Model

- Consider a multinomial on L mixture components with parameters $\boldsymbol{\pi} = (\pi_1, \dots, \pi_L)$
- Let π have a symmetric Dirichlet prior with hyperparameters ($\alpha_0/L,...,\alpha_0/L$)
- If x_i is drawn from a mixture component, z_i, according to the defined distribution:

$$\pi \mid \alpha_0 \sim \operatorname{Dir}(\alpha_0/L, \dots, \alpha_0/L) \qquad z_i \mid \pi \sim \pi$$

$$\phi_k \mid G_0 \sim G_0 \qquad x_i \mid z_i, (\phi_k)_{k=1}^L \sim F(\phi_{z_i})$$

Infinite Limit of Finite Mixture Model

 $\boldsymbol{\pi} \mid \alpha_0 \sim \operatorname{Dir}(\alpha_0/L, \ldots, \alpha_0/L) \qquad \qquad z_i \mid \boldsymbol{\pi} \sim \boldsymbol{\pi}$

 $\phi_k \mid G_0 \sim G_0 \qquad \qquad x_i \mid z_i, (\phi_k)_{k=1}^L \sim F(\phi_{z_i})$

• If
$$G^{L} = \sum_{k=1}^{L} \pi_{k} \delta_{\phi_{k}}$$
; L approaches ∞ :
$$\int f(\theta) \, dG^{L}(\theta) \xrightarrow{\mathcal{D}} \int f(\theta) \, dG(\theta)$$

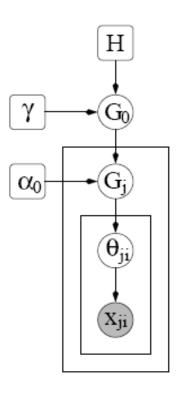
• The marginal distribution of x₁,x₂.... approaches that of a Dirichlet Process Mixture Model

Content

- Introduction and Motivation
- Dirichlet Processes
- Hierarchical Dirichlet Processes
 - Definition
 - Three Analogs
- Inference
 - Three Sampling Strategies

HDP Definition

- General idea
 - To model grouped data
 - Each group j <=> a Dirichlet process mixture model
 - Hierarchical prior to link these mixture models <=> hierarchical Dirichlet process
 - A hierarchical Dirichlet process is
 - A distribution over a set of random probability measures ()



HDP Definition (Cont.)

- Formally, a hierarchical Dirichlet process defines
 - A set of random probability measures , one for each group j
 - A global random probability measure
 - is a distributed as a Dirichlet process is discrete! $G_0 \mid \gamma, H \sim \mathrm{DP}(\gamma, H)$
 - are conditional independent given , also follow DP

$$G_j \mid \alpha_0, G_0 \sim \operatorname{DP}(\alpha_0, G_0)$$

Hierarchical Dirichlet Process Mixture Model

- Hierarchical Dirichlet process as prior distribution over the factors for grouped data
- For each group j
 - Each observation corresponds to a factor
 - The factors are i.i.d random. variables distributed as

$$\theta_{ji} \mid G_j \sim G_j \\ x_{ji} \mid \theta_{ji} \sim F(\theta_{ji})$$
²²

Some Notices

- HDP can be extended to more than two levels
 - The base measure *H* can be drawn from a DP, and so on and so forth
 - A tree can be formed
 - Each node is a DP
 - Children nodes are conditionally independent given their parent, which is a base measure
 - The atoms at a given node are shared among all its descendant nodes

Analog I: The stick-breaking construction

Stick-breaking representation of

$$\phi_k \sim H$$
 $G_0 = \sum_{k=1}^{\infty} \beta_k \delta_{\phi_k}$

 $\boldsymbol{\beta} = (\beta_k)_{k=1}^{\infty} \sim \operatorname{GEM}(\gamma) \text{ i.e., } \beta'_k \sim \operatorname{Beta}(1,\gamma) \quad \beta_k = \beta'_k \prod (1-\beta'_l)$

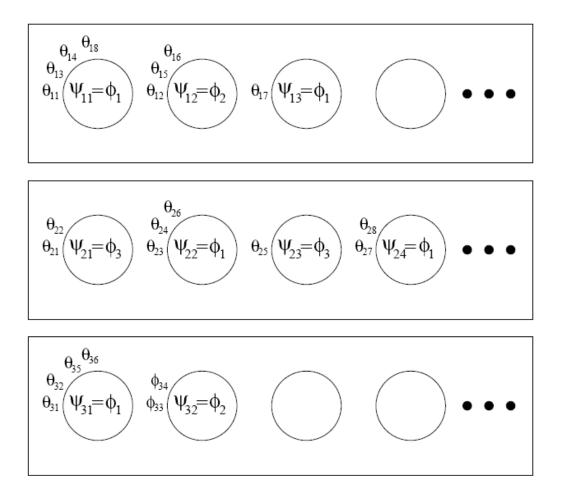
- k-1l=1
- Stick-breaking representation of

Equivalent representation using conditional distributions

 $\begin{array}{lll} \boldsymbol{\beta} \mid \boldsymbol{\gamma} \sim \operatorname{GEM}(\boldsymbol{\gamma}) \\ \boldsymbol{\pi}_{j} \mid \boldsymbol{\alpha}_{0}, \boldsymbol{\beta} \sim \operatorname{DP}(\boldsymbol{\alpha}_{0}, \boldsymbol{\beta}) & z_{ji} \mid \boldsymbol{\pi}_{j} \sim \boldsymbol{\pi}_{j} \\ \phi_{k} \mid H \sim H & x_{ji} \mid z_{ji}, (\phi_{k})_{k=1}^{\infty} \sim F(\phi_{z_{ji}}) \end{array}$

Analog II: the Chinese restaurant franchise

- General idea:
 - Allow multiple restaurants to share a common menu, which includes a set of dishes
 - A restaurant has infinite tables, each table has only one dish



Notations

- •
- The factor (dish) corresponding to
- ϕ_1, \cdots, ϕ_K
 - The factors (dishes) drawn from H
- •
- The dish chosen by table t in restaurant j
- : the index of associated with
- : the index of associated with

Conditional distributions

Integrate out G_j (sampling table for customer)

$$\theta_{ji} \mid \theta_{j1}, \dots, \theta_{j,i-1}, \alpha_0, G_0 \sim \sum_{t=1}^{m_{j}} \frac{n_{jt}}{i - 1 + \alpha_0} \delta_{\psi_{jt}} + \frac{\alpha_0}{i - 1 + \alpha_0} G_0$$

• Integrate out G₀ (sampling dish for table)

$$\psi_{jt} \mid \psi_{11}, \psi_{12}, \dots, \psi_{21}, \dots, \psi_{jt-1}, \gamma, H \sim \sum_{k=1}^{K} \frac{m_{\cdot k}}{m_{\cdot \cdot} + \gamma} \delta_{\phi_k} + \frac{\gamma}{m_{\cdot \cdot} + \gamma} H$$

Count notation: , number of customers in restaurant j, at table t, eating dish k , number of tables in restaurant j, eating dish k 28

Analog III: The infinite limit of finite mixture models

- Two different finite models both yield
 HDPM
 - Global mixing proportions place a prior for group-specific mixing proportions

$$\begin{array}{lll} \boldsymbol{\beta} \mid \boldsymbol{\gamma} & \sim & \operatorname{Dir}(\boldsymbol{\gamma}/L, \dots, \boldsymbol{\gamma}/L) \\ \boldsymbol{\pi}_{j} \mid \boldsymbol{\alpha}_{0}, \boldsymbol{\beta} & \sim & \operatorname{Dir}(\boldsymbol{\alpha}_{0}\boldsymbol{\beta}) \\ \phi_{k} \mid H & \sim & H \end{array} \qquad \begin{array}{ll} z_{ji} \mid \boldsymbol{\pi}_{j} & \sim & \boldsymbol{\pi}_{j} \\ x_{ji} \mid z_{ji}, (\phi_{k})_{k=1}^{L} & \sim & F(\phi_{z_{ji}}) \end{array}$$

As L goes infinity

Each group choose a subset of T mixture components

As L, T go to infinity

Content

- Introduction and Motivation
- Dirichlet Processes
- Hierarchical Dirichlet Processes
 - Definition
 - Three Analogs
- Inference
 - Three Sampling Strategies

Introduction to three MCMC schemes

- Assumption: H is conjugate to F
 - A straightforward Gibbs sampler based on Chinese restaurant franchise
 - An augmented representation involving both the Chinese restaurant franchise and the posterior for G_0
 - A variation to scheme 2 with streamline bookkeeping

Conditional density of data under mixture component k

 For data , conditional density under component k given all data items except is:

$$f_k^{-x_{ji}}(x_{ji}) = \frac{\int f(x_{ji}|\phi_k) \prod_{j'i' \neq ji, z_{j'i'}=k} f(x_{j'i'}|\phi_k) h(\phi_k) \, d\phi_k}{\int \prod_{j'i' \neq ji, z_{j'i'}=k} f(x_{j'i'}|\phi_k) h(\phi_k) \, d\phi_k}$$

• For data set x_{jt} , conditional density $f_k^{-x_{jt}}(x_{jt})$ is similarly defined

Scheme I: Posterior sampling in the Chinese restaurant franchise

- Sampling *t* and *k*
 - Sampling t

$$p(t_{ji} = t \mid \boldsymbol{t}^{-ji}, \boldsymbol{k}) \propto \begin{cases} n_{jt}^{-ji} f_{k_{jt}}^{-x_{ji}}(x_{ji}) & \text{if } t \text{ previously used,} \\ \alpha_0 p(x_{ji} \mid \boldsymbol{t}^{-ji}, t_{ji} = t^{\text{new}}, \boldsymbol{k}) & \text{if } t = t^{\text{new}}. \end{cases}$$

• If is a new t, sampling the k corresponding to it

 $p(k_{jt^{\text{new}}} = k \mid \boldsymbol{t}, \boldsymbol{k}^{-jt^{\text{new}}}) \propto \begin{cases} m_{\cdot k} f_k^{-x_{ji}}(x_{ji}) & \text{if } k \text{ previously used,} \\ \gamma f_{k^{\text{new}}}^{-x_{ji}}(x_{ji}) & \text{if } k = k^{\text{new}}. \end{cases}$

• And

$$p(x_{ji} \mid t^{-ji}, t_{ji} = t^{\text{new}}, k) = \sum_{k=1}^{K} \frac{m_{\cdot k}}{m_{\cdot \cdot} + \gamma} f_k^{-x_{ji}}(x_{ji}) + \frac{\gamma}{m_{\cdot \cdot} + \gamma} f_{k^{\text{new}}}^{-x_{ji}}(x_{ji})$$

- Sampling
$$\mathbf{k}$$

•
 $p(k_{jt} = k \mid \mathbf{t}, \mathbf{k}^{-jt}) \propto \begin{cases} m_{\cdot k}^{-jt} f_k^{-\mathbf{x}_{jt}}(\mathbf{x}_{jt}) & \text{if } k \text{ is previously used,} \\ \gamma f_{k^{\text{new}}}^{-\mathbf{x}_{jt}}(\mathbf{x}_{jt}) & \text{if } k = k^{\text{new}}. \end{cases}$

Where is all the observations for table t in restaurant j

Scheme II: Posterior sampling with an augmented representation

Posterior of G₀ given

$$\mathsf{DP}(\gamma + m_{\cdots}, \frac{\gamma H + \sum_{k=1}^{K} m_{\cdot k} \delta_{\phi_k}}{\gamma + m_{\cdots}})$$

.

• An explicit construction for G₀ is given:

$$\boldsymbol{\beta} = (\beta_1, \dots, \beta_K, \beta_u) \sim \operatorname{Dir}(m_{\cdot 1}, \dots, m_{\cdot K}, \gamma) \qquad G_u \sim \operatorname{DP}(\gamma, H)$$
$$p(\phi_k \mid \boldsymbol{t}, \boldsymbol{k}) \propto h(\phi_k) \prod_{ji:k_{jt_{ji}}=k} f(x_{ji} \mid \phi_k) \qquad G_0 = \sum_{k=1}^K \beta_k \delta_{\phi_k} + \beta_u G_u$$

- Given a sample of G₀, posterior for each group is factorized and sampling in each group can be performed separately
- Sampling *t* and *k*:
 - Almost the same as in Scheme I
 - Except using β_k, β_u to replace m_{k}, γ
 - When a new component k_{new} is instantiated, draw $b \sim Beta(1, \gamma)$, and set $\beta_{k^{new}} = b\beta_u$ and $\beta_u^{new} = (1 b)\beta_u$

– Sampling for

 $(\beta_1,\ldots,\beta_K,\beta_u) \mid \boldsymbol{t},\boldsymbol{k} \sim \operatorname{Dir}(m_{\cdot 1},\ldots,m_{\cdot K},\gamma)$

Scheme III: Posterior sampling by direct assignment

- Difference from Scheme I and II:
 - In I and II, data items are first assigned to some table t, and the tables are then assigned to some component k
 - In III, directly assign data items to component via variable , which is equivalent to
 - Tables are collapsed to numbers

• Sampling **z**:

$$p(z_{ji} = k \mid \boldsymbol{z}^{-ji}, \boldsymbol{m}, \boldsymbol{\beta}) = \begin{cases} (n_{j \cdot k}^{-ji} + \alpha_0 \beta_k) f_k^{-x_{ji}}(x_{ji}) & \text{if } k \text{ previously used,} \\ \alpha_0 \beta_u f_{k^{\text{new}}}^{-x_{ji}}(x_{ji}) & \text{if } k = k^{\text{new}}. \end{cases}$$

• Sampling *m*:

$$p(m_{jk} = m \mid \boldsymbol{z}, \boldsymbol{m}^{-jk}, \boldsymbol{\beta}) = \frac{\Gamma(\alpha_0 \beta_k)}{\Gamma(\alpha_0 \beta_k + n_{j \cdot k})} s(n_{j \cdot k}, m) (\alpha_0 \beta_k)^m$$

Sampling

$$(\beta_1,\ldots,\beta_K,\beta_u) \mid \boldsymbol{t},\boldsymbol{k} \sim \operatorname{Dir}(m_{\cdot 1},\ldots,m_{\cdot K},\gamma)$$

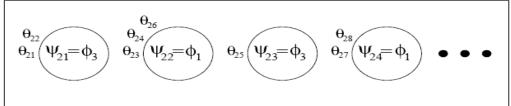
Comparison of Sampling Schemes

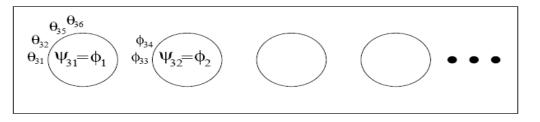
- In terms of ease of implementation
 The direct assignment is better
- In terms of convergence speed
 - Direct assignment changes the component membership of data items one at a time
 - Scheme I and II, component membership of one table will change the membership of multiple data items at the same time, leading to better performance

Applications

- Hierarchical DP extension of LDA
 - In CRF representation: dishes are topics, customers are the observed words

$$\begin{array}{c} \theta_{14} \\ \theta_{13} \\ \theta_{11} \\ \psi_{11} = \varphi_1 \end{array} \begin{array}{c} \theta_{16} \\ \theta_{15} \\ \theta_{12} \\ \psi_{12} = \varphi_2 \end{array} \\ \theta_{17} \\ \psi_{13} = \varphi_1 \end{array} \end{array} \begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array}$$

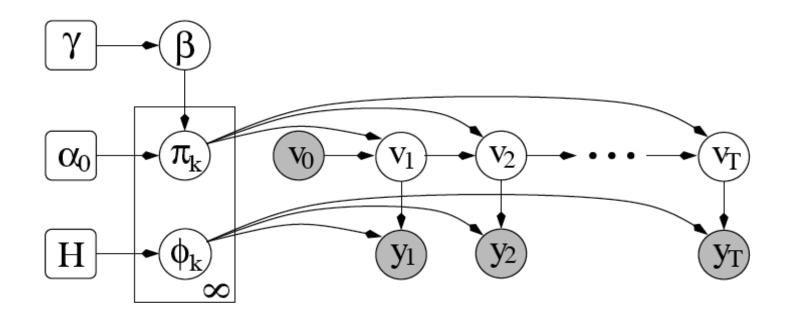




42

Applications

• HDP-HMM



References

 Yee Whye Teh et. al., Hierarchical Dirichlet Processes, 2006