

 We need independent samples to estimate a
desired distribution (usually posterior
distribution, p(Y|e))

 We can setup a Markov chain that converges
to a stationary distribution

 Satisfying detailed balance is an easy way to
guarantee convergence to equilibrium

 Desired distribution
 P(D, I, S, L | G=g2)

 Usually the state space is huge but in our toy
example:

 Samples are shown as x:(d,i,s,l,g)
 Given our graphical model we can simply

evaluate every sample as:

4832222 GLSID

)g|l(p)i,d|g(p)i|s(p)i(p)d(p)x(p

 Ergodicity (special case of law of large
numbers). If a Markov process is positive
recurrent with invariant distribution then

 Where

 And is the unique invariant distribution

 1
1 1

0

n

k

k nasfXf
n

P

Ii

ii fff E

 We cannot always sample efficiently from
P(X)

 But we might be able to evaluate P(X)
efficiently

 In that case, we could sample efficiently from
some other “simpler” distribution called the
proposal distribution Q(X)

 if Q(X)≠0 where P(X)≠0

 Several ways we can do this with MCMC

 Metropolis

 Metropolis Hasting

 Gibbs Sampling

1. Sample a point from a proposal distribution

2. Compute the importance ratio

3. Move to the new state with an transition
probability (related to importance ratio)

x)|q(y

)|q()p(

)|q()p(

xyx

yxy
r

1}x){r|q(yy)(x

 The probability of moving from one state to
another must be symmetric:

x)|q(yy)|q(x

 Importance ratio

 Transition probability

1}x){r|q(yy)(x

)p(

)p(

)|q()p(

)|q()p(

x

y

xyx

yxy
r

X<-randomValue()

while(1):

 Y=generateSample(q(Y|X))

 r=p(Y)/p(X)

 if(r>1):

 X=Y

 else:

 t=generateSample(uniform(0,1))

 if(t<r):

 X=Y

)xy()y(p
)y(p

)x(p
y)|p(y)q(x

p(y)

p(x)
y)|p(y)q(x

p(y)

p(y)
y)|p(x)q(x

y)|p(x)q(x 1x)|p(x)q(y

then)x(p)y(p assume

)x(p

)y(p
)x|y(q)x(p)yx()x(p

1

1

 Desired distribution
 P(D, I, S, L | G=g2)

 Usually the state space is huge but in our toy
example:

 Samples are shown as x:(d,i,s,l,g)
 Given our graphical model we can simply

evaluate every sample as:

)g|l(p)i,d|g(p)i|s(p)i(p)d(p)x(p

4832222 GLSID

 Let proposal distribution be uniform
 Start with random x:(d0,i1 ,s1,l1 ,g2)

 Obtain y by uniformly sampling from I
 y:(d1,i1 ,s0,l0 ,g2)

 Draw a random value between [0,1]. If it is “>”
than 0.42 reject it. Let say 0.32, so accept y.

007060080803060)x(p

00304030203040)y(p

4201
0070

0030
1 .

.

.

)x(p

)y(p

 Again obtain the next y by uniformly
sampling from I.

 y:(d0,i0 ,s0,l0 ,g2)

 So accept y and so on

064040409507060)y(p

11
0030

0640
1

.

.

)x(p

)y(p

 The proposal distribution need not be
symmetric

 Now the proposal distribution is factored into
the importance ratio

 Follows the general form introduced earlier
 This is more general (and useful) than

Metropolis algorithm

 Importance ratio

 Transition probability

1}r){x|y(qy)(x

)x|yq()xp(

)y|xq()yp(
r

X<-randomValue()

while(1):

 Y=generateSample(q(Y|X))

 r=p(Y)q(X|Y)/p(X)q(Y|X)

 if(r>1):

 X=Y

 else:

 t=generateSample(uniform(0,1))

 if(t<r):

 X=Y

)xy()yp(

}
)y|x(q)yp(

)x|y(q)xp(
){y|x(q)yp(

)y|x(q)yp(

)x|y(q)xp(
)y|x(q)yp(

)y|x(q)yp(

)x|y(q)xp(
)y|x(q)yp(

)y|x(q)yp(

)y|x(q)yp(
)x|y(q)xp()x|y(q)xp(

)x|y(q)xp()y|x(q)yp(assum

}
)x|y(q)xp(

)y|x(q)yp(
){x|y(q)xp()yx()xp(

1

1

 Special case of Metropolis-Hastings
algorithm

 The proposal distribution has a given form
(i.e. it is not designed on a problem by
problem basis)

 Samples the components of the outcome
vector one at a time using the marginal
distribution, where all other components are
fixed to values from previous samples

 Proposal distribution

 Importance ratio is unity. We always accept.

otherwise

xy)x|y(p
)x|y(q

jjjj

0

1
)|q()p(

)|q()p(

xyx

yxy
r

X<-randomValue()

while(1):

 for(j=0;j<len(X);j++)

 y=generateSample(p(y|X[0:j],X[j+1:len(x)]))

 X[j]=y

1

)xp(

)yp(

)xp()yp()xp(

)yp()xp()yp(

)xp()y,yp()xp(

)yp()x,xp()yp(

)y|yp()xp(

)x|xp()yp(

)x|yp()xp(

)y|xp()yp(

)x|yq()xp(

)y|xq()yp(
r

j

j

j

j

jjj

jjj

jj

jj

jj

jj

 Let start with x:(d0 ,i1 ,s1 ,l1 ,g2)
 We will sample D,I,S,L and G in a round robin

manner
 Sample D:

 s1:p(d0,i1 ,s1,l1 ,g2)= 0.6x0.3x0.8x0.08x0.6=0.007

 s2:p(d1,i1 ,s1,l1 ,g2)= 0.4x0.3x0.8x0.3x0.6 =0.017

 Generate a random number between
[0,0.007+0.017], if it is greater than 0.007 move to
s2 otherwise move to s1. let say random value is
0.011. so current state will become x:(d1,i1 ,s1,l1 ,g2)

 Sample I:

 s1:p(d1,i0 ,s1,l1 ,g2)= 0.4x0.7x0.05x0.25x0.6=0.002

 s2:p(d1,i1 ,s1,l1 ,g2)= 0.4x0.3x0.8x0.3x0.6 =0.017

 Generate a random number between
[0,0.002+0.017], if it is greater than 0.002 move to
s2 otherwise move to s1. let say random value is
0.001. so current state will become x:(d1,i0 ,s1,l1 ,g2)

 Sample S and so on

 Learning how a tool works is one thing, using
it in a practical situation is another.

 MCMC is no different.

 Convergence and ergodicity theorems state

 This is nice, but they don’t say anything about
how fast they converge

 njXP jn as)(

1

0

1 n

k

k nasfXf
n

 How can we tell if our sample has accurately
characterized our desired distribution?

 How big should n be before we trust our
result?

 How long do is this MCMC thing going to
take?

 Mixing is a measure of how long a Markov
process takes to get near its equilibrium.

 There are many analytic ways to calculate
this, but only for completely characterized
Markov chains.

 For sampling, we would like our process to
converge quickly from an arbitrary point in
the space. This is called “mixing well.”

 We start the Markov chain from a random
point in the sample space.

 This point and the points in its neighborhood
might be very unlikely according to our
distribution.

 Run the Markov chain for many iterations
before using the sampled points. This is
called burn in.

 How long should our burn in last?

1. Analytically evaluate the convergence rate of
our chain

1. Usually results in overly pessimistic estimates

2. Use convergence diagnostics

1. Do not guarantee convergence

3. Use perfect simulation

1. Only valid for specific types of problems

 Consecutive outputs from the chain can be
highly correlated

 Saving all of the sampled points can be
expensive

 We can save only every k outputs, which is
called thinning

 Sample of our samples

 Markov chains are ergodic

 MCMC is a technique for importance
sampling

 Metropolis requires a symmetric proposal
distribution

 Metropolis-Hasting does not

 1
1 1

0

n

k

k nasfXf
n

P

 Gibbs sampling is special case of Metropolis
Hasting that always accepts the proposal

 In implementing MCMC, convergence and
independence are major concerns

 Burn in (convergence rate, convergence
diagnostics , perfect sampling)

 Thinning

