


 We need independent samples to estimate a 
desired distribution (usually posterior 
distribution, p(Y|e)) 

 We can setup a Markov chain that converges 
to a stationary distribution 

 Satisfying detailed balance is an easy way to 
guarantee convergence to equilibrium 
 
 



 
 
 
 
 
 
 

 Desired distribution 
 P(D, I, S, L | G=g2) 

 



 Usually the state space is huge but in our toy 
example: 
 
 

 Samples are shown as x:(d,i,s,l,g) 
  Given our graphical model we can simply 

evaluate every sample as: 
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 Ergodicity (special case of law of large 
numbers). If a Markov process is positive 
recurrent with invariant distribution      then 
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 And      is the unique invariant distribution 
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 We cannot always sample efficiently from 
P(X) 

 But we might be able to evaluate P(X) 
efficiently 

 In that case, we could sample efficiently from 
some other “simpler” distribution called the 
proposal distribution Q(X) 
 



 if Q(X)≠0 where P(X)≠0  
 



 Several ways we can do this with MCMC 

 Metropolis 

 Metropolis Hasting 

 Gibbs Sampling 



1. Sample a point from a proposal distribution 
 

2. Compute the importance ratio 
 
 

3. Move to the new state with an transition 
probability (related to importance ratio) 
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 The probability of moving from one state to 
another must be symmetric: 
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 Importance ratio 
 
 
 
 

 Transition probability 
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X<-randomValue() 

while(1): 

 Y=generateSample(q(Y|X)) 

 r=p(Y)/p(X) 

 if(r>1): 

  X=Y 

 else: 

  t=generateSample(uniform(0,1)) 

  if(t<r): 

   X=Y 
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 Desired distribution 
 P(D, I, S, L | G=g2) 

 



 Usually the state space is huge but in our toy 
example: 
 
 

 Samples are shown as x:(d,i,s,l,g) 
  Given our graphical model we can simply 

evaluate every sample as: 
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 Let proposal distribution be uniform 
 Start with random x:(d0,i1 ,s1,l1 ,g2) 

 
 Obtain y by uniformly sampling from I  
    y:(d1,i1 ,s0,l0 ,g2) 

 
 
 

 Draw a random value between [0,1]. If it is “>” 
than 0.42 reject it. Let say 0.32, so accept y. 
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 Again obtain the next y by uniformly 
sampling from I.  

    y:(d0,i0 ,s0,l0 ,g2) 
 
 

 
 
 So accept y and so on 
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 The proposal distribution need not be 
symmetric 

 Now the proposal distribution is factored into 
the importance ratio 

 Follows the general form introduced earlier 
 This is more general (and useful) than 

Metropolis algorithm 



 Importance ratio 
 
 
 
 

 Transition probability 
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X<-randomValue() 

while(1): 

 Y=generateSample(q(Y|X)) 

 r=p(Y)q(X|Y)/p(X)q(Y|X) 

 if(r>1): 

  X=Y 

 else: 

  t=generateSample(uniform(0,1)) 

  if(t<r): 

   X=Y 
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 Special case of Metropolis-Hastings 
algorithm 

 The proposal distribution has a given form 
(i.e. it is not designed on a problem by 
problem basis) 

 Samples the components of the outcome 
vector one at a time using the marginal 
distribution, where all other components are 
fixed to values from previous samples 



 Proposal distribution 
 
 
 
 

 Importance ratio is unity.  We always accept. 
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X<-randomValue() 

while(1): 

 for(j=0;j<len(X);j++) 

  y=generateSample(p(y|X[0:j],X[j+1:len(x)])) 

  X[j]=y 
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 Let start with x:(d0 ,i1 ,s1 ,l1 ,g2) 
 We will sample D,I,S,L and G in a round robin 

manner 
 Sample D: 

 s1:p(d0,i1 ,s1,l1 ,g2)= 0.6x0.3x0.8x0.08x0.6=0.007 

 s2:p(d1,i1 ,s1,l1 ,g2)= 0.4x0.3x0.8x0.3x0.6 =0.017 

 Generate a random number between 
[0,0.007+0.017], if it is greater than 0.007 move to 
s2 otherwise move to s1. let say random value is 
0.011. so current state will become x:(d1,i1 ,s1,l1 ,g2) 

 



 Sample I: 

 s1:p(d1,i0 ,s1,l1 ,g2)= 0.4x0.7x0.05x0.25x0.6=0.002 

 s2:p(d1,i1 ,s1,l1 ,g2)= 0.4x0.3x0.8x0.3x0.6 =0.017 

 Generate a random number between 
[0,0.002+0.017], if it is greater than 0.002 move to 
s2 otherwise move to s1. let say random value is 
0.001. so current state will become x:(d1,i0 ,s1,l1 ,g2) 

 Sample S and so on 
 



 Learning how a tool works is one thing, using 
it in a practical situation is another. 

 MCMC is no different. 



 Convergence and ergodicity theorems state 
 
 
 
 
 

 This is nice, but they don’t say anything about 
how fast they converge  
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 How can we tell if our sample has accurately 
characterized our desired distribution? 

 How big should n be before we trust our 
result? 

 How long do is this MCMC thing going to 
take? 



 Mixing is a measure of how long a Markov 
process takes to get near its equilibrium. 

 There are many analytic ways to calculate 
this, but only for completely characterized 
Markov chains. 

 For sampling, we would like our process to 
converge quickly from an arbitrary point in 
the space.  This is called “mixing well.” 



 We start the Markov chain from a random 
point in the sample space. 

 This point and the points in its neighborhood 
might be very unlikely according to our 
distribution. 

 Run the Markov chain for many iterations 
before using the sampled points.  This is 
called burn in. 



 How long should our burn in last? 

1. Analytically evaluate the convergence rate of 
our chain 

1. Usually results in overly pessimistic estimates 

2. Use convergence diagnostics 

1. Do not guarantee convergence 

3. Use perfect simulation 

1. Only valid for specific types of problems 



 Consecutive outputs from the chain can be 
highly correlated 

 Saving all of the sampled points can be 
expensive 

 We can save only every k outputs, which is 
called thinning 

 Sample of our samples 



 Markov chains are ergodic 
 
 

  MCMC is a technique for importance 
sampling 

 Metropolis requires a symmetric proposal 
distribution 

 Metropolis-Hasting does not 
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 Gibbs sampling is special case of Metropolis 
Hasting that always accepts the proposal 

 In implementing MCMC, convergence and 
independence are  major concerns 

 Burn in (convergence rate, convergence 
diagnostics , perfect sampling) 

 Thinning 

 


