


 We want to compute the expectation of some 
function relative to some “difficult” distribution 
(usually posterior distribution, p(Y|e)) 

 We could approximate the expectation by 
sampling from the distribution 

 But directly sampling from the distribution is 
intractable 

 We need independent samples to estimate the 
desired distribution 



 We can use rejection sampling but it is inefficient 
 We can use likelihood weighting but 

 Evidence nodes affect sampling only for their 
descendants 

 When evidence is mostly at the leaf nodes, we 
effectively sample from the prior distribution which 
can be different from posterior distribution 

 Therefore likelihood weighting introduces bias toward 
the prior in the sample 



 We will introduce another sampling method, 
Markov Chain Monte Carlo (MCMC) that uses a 
Markov chain to generate samples 

 Understanding MCMC well depends on a basic 
understanding of Markov chains 

 We will give a brief introduction today to Markov 
chains before continuing with MCMC on Friday 



 A discrete time Markov chain is a sequence of 
random variables whose distributions are 
related in a particular way (a stochastic 
process) 

 
 All of these random variables are drawn from 

the same set, called the state space. 
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 Each Markov chain is defined by an initial 
distribution vector and a stochastic transition 
matrix. 

1
Ii

i

IiP
Ij

ij 


for  1

),(~)( 0  MarkovX nn



1 2 

3 4 

2

1

2

1

2

1

2

1 2

1

2

1

2

1

2

1

1 2 3 4 

0.25 0.25 0.25 

0.75 0.75 0.75 

0.75 0.25 





















05.05.00

5.0005.0

5.0005.0

05.05.00





















25.075.000

25.0075.00

025.0075.0

0025.075.0

 25.025.025.025.0  0001



 A set of random variables is Markov if: 
 

 
 and 

 
 

ii P(X  )0

1
),...,,,|( 00221111 

  nniinnnnnnnn iXiXiXiXiXP



 Given a Markov process 
 Conditioned on current state 

 
 

 We can forget the past.  The Markov process 
has no memory.  Only the current state 
matters for deciding the future. 
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 Multiplying the current distribution by the 
transition matrix gives the distribution of 
being in the next state 
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 A Markov process is defined by a stochastic 
transition matrix and an initial distribution. 

 In a Markov chain, the future is independent 
of the past.  It only depends on the present. 

 Multiplying a distribution on the state space 
by the transition matrix gives the distribution 
after one transition. 



 We are going to generate samples from a 
Markov process. 

 Ideally, the Markov process should behave in 
“predictable” ways. 

 In a sense, we are trying to make a “stable” 
Markov chain. 

 We are going to discuss several properties of 
a Markov chain that will make it become 
“stable”. 



 P is irreducible if 
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 State i is called recurrent if we keep coming 
back to it. 
 
 

 And i is called transient if we eventually leave 
it forever.  
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 State i  is called positive recurrent if the 
expected return time to the state is finite.  
 
 

 Where  
 

 This always true for a recurrent Markov 
process with finite states, so we won’t give 
examples 
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 State i is called aperiodic if we could return 
back to the same state with any number of 
transitions for sufficiently large number of 
transitions 
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 Properties of processes 
 Irreducibility – after waiting a certain time, we 

have a non-zero probability of getting from any 
state to any state 

 Properties of states 
 Recurrence – we can always return to this state 

 Positive recurrence –we expect to return to this 
state in a finite amount of time 

 Aperiodicity – we can return to the same state 
after any number of transitions (after a certain m) 

 



 We can imagine a Markov process that gets 
“stuck” in a single distribution 
 

 Not all Markov processes have an invariant 
distribution 

 States must be positive recurrent 

 The invariant distribution is an eigenvector of 
the transition matrix with eigenvalue one 

 The invariant distribution is unique 
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 Since we are sampling from a Markov 
process, it would be nice if we could design 
that process to get “stuck” in a distribution 
we desire 

 If the Markov process is in its equilibrium 
distribution, every sample from it will be an 
independent sample from the invariant 
distribution 



 If a Markov process is irreducible and 
aperiodic, it will always converge to its 
equilibrium distribution 
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 Provided we have an irreducible aperiodic 
positive recurrent Markov process, it will 
converge to an equilibrium distribution and 
stay in that distribution 



 So we can converge to an equilibrium 
distribution if our Markov process is designed 
correctly. 

 If we could make a process converge to a 
specific distribution, we could sample from 
that distribution. 

 How can we design a Markov process with a 
desired equilibrium distribution? 



 What happens if we run a Markov chain at 
equilibrium in reverse? 
 
 
 
 

 Proof: need to show 
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 What if we look for a Markov chain such that 
 

 The Markov chain is the same whether we run 
it in the forward or reverse direction 

 We call such a Markov process reversible 
 Reversibility implies 

 
 Such a Markov chain is said to be in detailed 

balance 
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 As long as our transition matrix is in detailed 
balance with our desired distribution, our 
Markov process will eventually converge to 
our desired distribution 

 Maybe we can sample from such a process, 
even though direct sampling from the desired 
distribution is intractable (due to the large 
state space) 
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 A Markov process is defined by an initial 
distribution and a transition matrix 
 

 The Markov property states that the future 
depends only on the present 
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 A Markov process that is irreducible, 
aperiodic, and positively recurrent will 
converge to its equilibrium distribution 
 
 

 A reversible Markov chain is in detailed 
balance 
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 We will discuss techniques to create Markov 
processes that are in detailed balance with a 
specified distribution. 

 In this way, we can solve our sampling 
problem. 


