Markov Chain Monte Carlo

Why Stochastic Sampling?

- We want to compute the expectation of some function relative to some "difficult" distribution (usually posterior distribution, $\mathrm{p}(\mathrm{Y} \mid \mathrm{e})$)
- We could approximate the expectation by sampling from the distribution
- But directly sampling from the distribution is intractable
- We need independent samples to estimate the desired distribution

Why Stochastic Sampling?

- We can use rejection sampling but it is inefficient
- We can use likelihood weighting but
- Evidence nodes affect sampling only for their descendants
- When evidence is mostly at the leaf nodes, we effectively sample from the prior distribution which can be different from posterior distribution
- Therefore likelihood weighting introduces bias toward the prior in the sample

Why Stochastic Sampling?

- We will introduce another sampling method, Markov Chain Monte Carlo (MCMC) that uses a Markov chain to generate samples
- Understanding MCMC well depends on a basic understanding of Markov chains
- We will give a brief introduction today to Markov chains before continuing with MCMC on Friday

Definition

- A discrete time Markov chain is a sequence of random variables whose distributions are related in a particular way (a stochastic process)

$$
X_{0}, X_{1} \ldots X_{n}=\left(X_{n}\right)_{n \geq 0}
$$

- All of these random variables are drawn from the same set, called the state space.

$$
X_{0}, X_{1} \ldots X_{n} \in I
$$

Example

Example

Example

Definition

- Each Markov chain is defined by an initial distribution vector and a stochastic transition matrix.

$$
\begin{gathered}
\left(X_{n}\right)_{n \geq 0} \sim \operatorname{Markov}(\lambda, \mathrm{P}) \\
\sum_{i \in I} \lambda_{i}=1 \\
\sum_{j \in I} P_{i j}=1 \text { for } i \in I
\end{gathered}
$$

Example

$\lambda=\left[\begin{array}{llll}0.25 & 0.25 & 0.25 & 0.25\end{array}\right]$

$$
P=\left[\begin{array}{cccc}
0 & 0.5 & 0.5 & 0 \\
0.5 & 0 & 0 & 0.5 \\
0.5 & 0 & 0 & 0.5 \\
0 & 0.5 & 0.5 & 0
\end{array}\right]
$$

$$
\begin{gathered}
\lambda=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \\
\mathrm{P}=\left[\begin{array}{cccc}
0.75 & 0.25 & 0 & 0 \\
0.75 & 0 & 0.25 & 0 \\
0 & 0.75 & 0 & 0.25 \\
0 & 0 & 0.75 & 0.25
\end{array}\right]
\end{gathered}
$$

Definition

- A set of random variables is Markov if:

$$
P\left(X_{0}=i\right)=\lambda_{i}
$$

and

$$
P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, X_{n-1}=i_{n-1}, X_{n-2}=i_{n-2}, \ldots, X_{0}=i_{0}\right)=\mathrm{P}_{i_{n} i_{n+1}}
$$

Markov Property

- Given a Markov process $\left(X_{n}\right)_{n \geq 0} \sim \operatorname{Markov}(\lambda, \mathrm{P})$
- Conditioned on current state $X_{m}=i$

$$
\left(X_{m+n}\right)_{n \geq 0}=\left(X_{m}, X_{m+1,}, \ldots, X_{m+n}\right) \sim \operatorname{Markov}\left(\delta_{i}, \mathrm{P}\right)
$$

- We can forget the past. The Markov process has no memory. Only the current state matters for deciding the future.

$$
P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, X_{n-1}=i_{n-1}, X_{n-2}=i_{n-2}, \ldots, X_{0}=i_{0}\right)=P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right)
$$

Transition Matrix

- Multiplying the current distribution by the transition matrix gives the distribution of being in the next state

$$
\begin{gathered}
P\left(X_{t}\right)=\vec{\gamma} \Rightarrow P\left(X_{t+1}\right)=\overrightarrow{\mathrm{p}} \\
P\left(X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right)=\lambda \mathrm{P}_{\mathrm{i}_{0, i}, \mathrm{P}_{i, i, 2}, \ldots \mathrm{P}_{i,-1, i, i_{n}}} \\
P\left(X_{n}\right)=\lambda \mathrm{P}^{n}
\end{gathered}
$$

Example

$\lambda \mathbf{P}=\left[\begin{array}{lll}0 & 1 / 3 & 2 / 3\end{array}\right]$
$\lambda \mathrm{P}^{4}=\left[\begin{array}{lll}8 / 27 & 11 / 27 & 8 / 27\end{array}\right]$
$\lambda \mathrm{P}^{2}=\left[\begin{array}{lll}4 / 9 & 4 / 9 & 1 / 9\end{array}\right]$
$\lambda \mathrm{P}^{5}=\left[\begin{array}{lll}10 / 27 & 8 / 27 & 9 / 27\end{array}\right]$
$\lambda \mathrm{P}^{3}=\left[\begin{array}{lll}3 / 9 & 2 / 9 & 4 / 9\end{array}\right] \quad \lambda \mathrm{P}^{6}=\left[\begin{array}{lll}25 / 81 & 28 / 81 & 28 / 81\end{array}\right]$

Review

- A Markov process is defined by a stochastic transition matrix and an initial distribution.
- In a Markov chain, the future is independent of the past. It only depends on the present.
- Multiplying a distribution on the state space by the transition matrix gives the distribution after one transition.

Remembering Our Goal

- We are going to generate samples from a Markov process.
- Ideally, the Markov process should behave in "predictable" ways.
- In a sense, we are trying to make a "stable" Markov chain.
- We are going to discuss several properties of a Markov chain that will make it become "stable".

Irreducibility

- P is irreducible if

$$
\forall i, j \in I ; \exists m>0 \text { s.t } \mathrm{P}_{i j}^{m}>0
$$

Example

$$
\mathrm{P}=\left[\begin{array}{ccc}
0 & 1 / 3 & 2 / 3 \\
2 / 3 & 0 & 1 / 3 \\
1 / 3 & 2 / 3 & 0
\end{array}\right]
$$

$$
\mathrm{P}^{2}=\left[\begin{array}{lll}
4 / 9 & 4 / 9 & 1 / 9 \\
1 / 9 & 4 / 9 & 4 / 9 \\
4 / 9 & 1 / 9 & 4 / 9
\end{array}\right]
$$

This process is irreducible

Example

$$
\begin{aligned}
\mathrm{P} & =\left[\begin{array}{ccc}
0 & 1 / 3 & 2 / 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\mathrm{P}^{2}=\mathrm{P}^{3} & =\mathrm{P}^{n}=\left[\begin{array}{ccc}
0 & 1 / 3 & 2 / 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

This process is reducible

Recurrence vs. Transient

- State i is called recurrent if we keep coming back to it.

$$
\mathrm{P}_{i}\left(X_{n}=i \text { for infinitely many } n\right)=1
$$

- And i is called transient if we eventually leave it forever.

$$
\mathrm{P}_{i}\left(X_{n}=i \text { for infinitely many } n\right)=0
$$

Example

$$
\begin{aligned}
\mathrm{P} & =\left[\begin{array}{ccc}
0 & 1 / 3 & 2 / 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\mathrm{P}^{2}=\mathrm{P}^{3} & =\mathrm{P}^{n}=\left[\begin{array}{ccc}
0 & 1 / 3 & 2 / 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

State 1 is transient

Positive Recurrent

- State i is called positive recurrent if the expected return time to the state is finite.

$$
E_{i}\left(T_{i}\right)<\infty
$$

- Where $T_{i}=\inf \left\{n \geq 0: X_{n}=i\right\}$
- This always true for a recurrent Markov process with finite states, so we won't give examples

Aperiodicity

- State i is called aperiodic if we could return back to the same state with any number of transitions for sufficiently large number of transitions $\mathrm{P}_{i i}^{(m)}>0$

$$
\mathrm{P}^{2 n+1}=\begin{array}{|cccc|}
\hline 0 & 0.5 & 0.5 & 0 \\
\hline 0.5 & 0 & 0 & 0.5 \\
0.5 & 0 & 0 & 0.5 \\
\hline 0 & 0.5 & 0.5 & 0 \\
\hline 0
\end{array}
$$

$$
\mathrm{P}^{2 n}=\begin{array}{|cccc|}
\hline 0.5 & 0 & 0 & 0.5 \\
\hline 0 & 0.5 & 0.5 & 0 \\
0 & 0.5 & 0.5 & 0 \\
\hline 0.5 & 0 & 0 & 0.5 \\
\hline
\end{array}
$$

Review

- Properties of processes
- Irreducibility - after waiting a certain time, we have a non-zero probability of getting from any state to any state
- Properties of states
- Recurrence - we can always return to this state
- Positive recurrence -we expect to return to this state in a finite amount of time
- Aperiodicity - we can return to the same state after any number of transitions (after a certain m)

Invariant (Equilibrium) Distribution

- We can imagine a Markov process that gets "stuck" in a single distribution

$$
\pi=\pi \mathrm{P}=\pi \mathrm{P}^{n}
$$

- Not all Markov processes have an invariant distribution
- States must be positive recurrent
- The invariant distribution is an eigenvector of the transition matrix with eigenvalue one
- The invariant distribution is unique

Invariant (Equilibrium) Distribution

- Since we are sampling from a Markov process, it would be nice if we could design that process to get "stuck" in a distribution we desire
- If the Markov process is in its equilibrium distribution, every sample from it will be an independent sample from the invariant distribution

Convergence to Equilibrium

- If a Markov process is irreducible and aperiodic, it will always converge to its equilibrium distribution

$$
P\left(X_{n}=j\right) \rightarrow \pi_{j} \text { as } n \rightarrow \infty
$$

Example

$(1) \frac{1}{3}, 2 \quad \lambda=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right] \quad \mathrm{P}=\left[\begin{array}{ccc}0 & 1 / 3 & 2 / 3 \\ 2 / 3 & 0 & 1 / 3 \\ 1 / 3 & 2 / 3 & 0\end{array}\right]$

3

$$
\begin{aligned}
& \lambda \mathrm{P}=\left[\begin{array}{lll}
0 & .3333 & .6667
\end{array}\right] \lambda \mathrm{P}^{4}=\left[\begin{array}{lll}
.2963 & .4074 & .2963
\end{array}\right] \\
& \lambda \mathrm{P}^{2}=\left[\begin{array}{lll}
.4444 & .4444 & .1111
\end{array}\right] \lambda \mathrm{P}^{5}=\left[\begin{array}{llll}
.3704 & .2963 & .3333
\end{array}\right] \\
& \lambda \mathrm{P}^{3}=\left[\begin{array}{llll}
.3333 & .2222 & .4444
\end{array}\right] \lambda \mathrm{P}^{6}=\left[\begin{array}{llll}
.3086 & .3457 & .3457
\end{array}\right] \\
& \lambda \mathrm{P}^{n}=\pi=\left[\begin{array}{llll}
.3333 & .3333 & .3333
\end{array}\right] \quad \text { For large enough } \mathrm{n}
\end{aligned}
$$

Review

- Provided we have an irreducible aperiodic positive recurrent Markov process, it will converge to an equilibrium distribution and stay in that distribution

Again Remembering Our Goal

- So we can converge to an equilibrium distribution if our Markov process is designed correctly.
- If we could make a process converge to a specific distribution, we could sample from that distribution.
- How can we design a Markov process with a desired equilibrium distribution?

Time Reversal

- What happens if we run a Markov chain at equilibrium in reverse?

$$
\begin{gathered}
\left(X_{n}\right)_{n \geq 0} \sim \operatorname{Markov}(\pi, \mathrm{P}) \\
Y_{n}=X_{N-n} \sim \operatorname{Markov}(\pi, \hat{\mathrm{P}}) \\
\pi_{j} \hat{\mathrm{P}}_{j i}=\pi_{i} \mathrm{P}_{i j}
\end{gathered}
$$

- Proof: need to show $\pi \hat{\mathrm{P}}=\pi$

$$
(\lambda \hat{\mathrm{P}})_{i}=\sum_{j \in I} \pi_{j} \hat{\mathrm{P}}_{j i}=\sum_{j \in I} \pi_{i} \mathrm{P}_{i j}=\pi_{i} \sum_{j \in I} \mathrm{P}_{i j}=\pi_{i} \times 1=\pi_{i}
$$

Example

$\pi \hat{\mathrm{P}}^{n}=\left[\begin{array}{lll}1 / 3 & 1 / 3 & 1 / 3\end{array}\right]$

Detailed Balance

- What if we look for a Markov chain such that

$$
\hat{P}=\mathrm{P}
$$

- The Markov chain is the same whether we run it in the forward or reverse direction
- We call such a Markov process reversible
- Reversibility implies

$$
\pi_{j} \mathrm{P}_{j i}=\pi_{i} \mathrm{P}_{i j}
$$

- Such a Markov chain is said to be in detailed balance

Example

$$
\pi \hat{\mathbf{P}}^{n}=\left[\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

$$
P \neq \hat{P}
$$

This process is not reversible (symmetric in time)

Example

$$
\begin{aligned}
& \pi_{1} \mathrm{P}_{12}=\pi_{2} \mathrm{P}_{21} \\
& \pi_{2} \mathrm{P}_{23}=\pi_{3} \mathrm{P}_{32} \\
& \pi_{3} \mathrm{P}_{34}=\pi_{4} \mathrm{P}_{43} \\
& \pi_{1}+\pi_{2}+\pi_{3}+\pi_{4}=1
\end{aligned}
$$

Example

$$
\begin{aligned}
& 0.25 \pi_{1}=0.75 \pi_{2} \\
& 0.25 \pi_{2}=0.75 \pi_{3} \\
& 0.25 \pi_{3}=0.75 \pi_{4} \\
& \pi_{1}+\pi_{2}+\pi_{3}+\pi_{4}=1
\end{aligned}
$$

Example

$$
\begin{array}{ll}
\pi_{1}=3 \pi_{2} & \pi_{1}=27 / 40 \\
\pi_{1}=9 \pi_{3} & \pi_{2}=9 / 40 \\
\pi_{1}=27 \pi_{4} & \pi_{3}=3 / 40 \\
\pi_{1}+\frac{1}{3} \pi_{1}+\frac{1}{9} \pi_{1}+\frac{1}{27} \pi_{1}=1 & \pi_{4}=1 / 40
\end{array}
$$

Detailed Balance

- As long as our transition matrix is in detailed balance with our desired distribution, our Markov process will eventually converge to our desired distribution
- Maybe we can sample from such a process, even though direct sampling from the desired distribution is intractable (due to the large state space)

$$
\pi_{j} \mathrm{P}_{j i}=\pi_{i} \mathrm{P}_{i j}
$$

Review

- A Markov process is defined by an initial distribution and a transition matrix

$$
\operatorname{Markov}(\lambda, \mathrm{P})
$$

The Markov property states that the future depends only on the present

$$
P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, X_{n-1}=i_{n-1}, X_{n-2}=i_{n-2}, \ldots, X_{0}=i_{0}\right)=P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right)
$$

Review

- A Markov process that is irreducible, aperiodic, and positively recurrent will converge to its equilibrium distribution

$$
\begin{gathered}
\pi=\pi \mathrm{P}=\pi \mathrm{P}^{n} \\
P\left(X_{n}=j\right) \rightarrow \pi_{j} \text { as } n \rightarrow \infty
\end{gathered}
$$

- A reversible Markov chain is in detailed balance

$$
\pi_{j} \mathrm{P}_{j i}=\pi_{i} \mathrm{P}_{i j}
$$

Next time...

- We will discuss techniques to create Markov processes that are in detailed balance with a specified distribution.
- In this way, we can solve our sampling problem.

