


 We want to compute the expectation of some 
function relative to some “difficult” distribution 
(usually posterior distribution, p(Y|e)) 

 We could approximate the expectation by 
sampling from the distribution 

 But directly sampling from the distribution is 
intractable 

 We need independent samples to estimate the 
desired distribution 



 We can use rejection sampling but it is inefficient 
 We can use likelihood weighting but 

 Evidence nodes affect sampling only for their 
descendants 

 When evidence is mostly at the leaf nodes, we 
effectively sample from the prior distribution which 
can be different from posterior distribution 

 Therefore likelihood weighting introduces bias toward 
the prior in the sample 



 We will introduce another sampling method, 
Markov Chain Monte Carlo (MCMC) that uses a 
Markov chain to generate samples 

 Understanding MCMC well depends on a basic 
understanding of Markov chains 

 We will give a brief introduction today to Markov 
chains before continuing with MCMC on Friday 



 A discrete time Markov chain is a sequence of 
random variables whose distributions are 
related in a particular way (a stochastic 
process) 

 
 All of these random variables are drawn from 

the same set, called the state space. 
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 Each Markov chain is defined by an initial 
distribution vector and a stochastic transition 
matrix. 
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 A set of random variables is Markov if: 
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 Given a Markov process 
 Conditioned on current state 

 
 

 We can forget the past.  The Markov process 
has no memory.  Only the current state 
matters for deciding the future. 
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 Multiplying the current distribution by the 
transition matrix gives the distribution of 
being in the next state 
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 A Markov process is defined by a stochastic 
transition matrix and an initial distribution. 

 In a Markov chain, the future is independent 
of the past.  It only depends on the present. 

 Multiplying a distribution on the state space 
by the transition matrix gives the distribution 
after one transition. 



 We are going to generate samples from a 
Markov process. 

 Ideally, the Markov process should behave in 
“predictable” ways. 

 In a sense, we are trying to make a “stable” 
Markov chain. 

 We are going to discuss several properties of 
a Markov chain that will make it become 
“stable”. 



 P is irreducible if 
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 State i is called recurrent if we keep coming 
back to it. 
 
 

 And i is called transient if we eventually leave 
it forever.  
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 State i  is called positive recurrent if the 
expected return time to the state is finite.  
 
 

 Where  
 

 This always true for a recurrent Markov 
process with finite states, so we won’t give 
examples 

  ii TE

 iXnT ni  :0inf



 State i is called aperiodic if we could return 
back to the same state with any number of 
transitions for sufficiently large number of 
transitions 
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 Properties of processes 
 Irreducibility – after waiting a certain time, we 

have a non-zero probability of getting from any 
state to any state 

 Properties of states 
 Recurrence – we can always return to this state 

 Positive recurrence –we expect to return to this 
state in a finite amount of time 

 Aperiodicity – we can return to the same state 
after any number of transitions (after a certain m) 

 



 We can imagine a Markov process that gets 
“stuck” in a single distribution 
 

 Not all Markov processes have an invariant 
distribution 

 States must be positive recurrent 

 The invariant distribution is an eigenvector of 
the transition matrix with eigenvalue one 

 The invariant distribution is unique 

n 



 Since we are sampling from a Markov 
process, it would be nice if we could design 
that process to get “stuck” in a distribution 
we desire 

 If the Markov process is in its equilibrium 
distribution, every sample from it will be an 
independent sample from the invariant 
distribution 



 If a Markov process is irreducible and 
aperiodic, it will always converge to its 
equilibrium distribution 
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 Provided we have an irreducible aperiodic 
positive recurrent Markov process, it will 
converge to an equilibrium distribution and 
stay in that distribution 



 So we can converge to an equilibrium 
distribution if our Markov process is designed 
correctly. 

 If we could make a process converge to a 
specific distribution, we could sample from 
that distribution. 

 How can we design a Markov process with a 
desired equilibrium distribution? 



 What happens if we run a Markov chain at 
equilibrium in reverse? 
 
 
 
 

 Proof: need to show 
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 What if we look for a Markov chain such that 
 

 The Markov chain is the same whether we run 
it in the forward or reverse direction 

 We call such a Markov process reversible 
 Reversibility implies 

 
 Such a Markov chain is said to be in detailed 

balance 
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This process is not reversible (symmetric in time) 
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 As long as our transition matrix is in detailed 
balance with our desired distribution, our 
Markov process will eventually converge to 
our desired distribution 

 Maybe we can sample from such a process, 
even though direct sampling from the desired 
distribution is intractable (due to the large 
state space) 
 

ijijij  



 A Markov process is defined by an initial 
distribution and a transition matrix 
 

 The Markov property states that the future 
depends only on the present 
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 A Markov process that is irreducible, 
aperiodic, and positively recurrent will 
converge to its equilibrium distribution 
 
 

 A reversible Markov chain is in detailed 
balance 
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 We will discuss techniques to create Markov 
processes that are in detailed balance with a 
specified distribution. 

 In this way, we can solve our sampling 
problem. 


