Markov Chain Monte Carlo



Why Stochastic Sampling?

We want to compute the expectation of some
function relative to some “difficult” distribution
(usually posterior distribution, p(Y|e))

We could approximate the expectation by
sampling from the distribution

But directly sampling from the distribution is
intractable

We need independent samples to estimate the
desired distribution



Why Stochastic Sampling?

We can use rejection sampling but it is inefficient
We can use likelihood weighting but
Evidence nodes affect sampling only for their
descendants

When evidence is mostly at the leaf nodes, we
effectively sample from the prior distribution which
can be different from posterior distribution

Therefore likelihood weighting introduces bias toward
the prior in the sample



Why Stochastic Sampling?

We will introduce another sampling method,
Markov Chain Monte Carlo (MCMC) that uses a
Markov chain to generate samples
Understanding MCMC well depends on a basic
understanding of Markov chains

We will give a brief introduction today to Markov
chains before continuing with MCMC on Friday



Definition

A discrete time Markov chain is a sequence of
random variables whose distributions are
related in a particular way (a stochastic
process)

Xgo Xy X = (X,)n0
All of these random variables are drawn from
the same set, called the state space.
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Definition

Each Markov chain is defined by an initial
distribution vector and a stochastic transition
matrix.

(X, ).s0 ~ Markov(4,P)
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Definition

A set of random variables is Markov if:

P(X,=i)=4
and

P(Xn+1 n+1|X _I X an 2:in—



Markov Property

Given a Markov process (X,),., ~ Markov(4,P)
Conditioned on current state X, =i

(Xm+n)n20 — (Xm’ Xm+1,' "0 m+n) I\/Ial’k0\/(5 P)

We can forget the past. The Markov process
has no memory. Only the current state
matters for deciding the future.

P(X n+1|xn:in’xn—lzin—l’xn—ZZi 21 X _IO) P(Xn+1 n+1|xn:in)
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Transition Matrix

Multiplying the current distribution by the
transition matrix gives the distribution of
being in the next state

P(Xt) — 77 = P(Xt+1) — 77P

P(X, =i, X, =i,y X =i )=AP . P.. .P. .

ig,dy ™ g,y Ih-1:ln

P(X )= AP"
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A Markov process is defined by a stochastic
transition matrix and an initial distribution.
In a Markov chain, the future is independent
of the past. It only depends on the present.
Multiplying a distribution on the state space

by the transition matrix gives the distribution
after one transition.



Remembering Our Goal

We are going to generate samples from a
Markov process.

Ideally, the Markov process should behave in
“predictable” ways.

In a sense, we are trying to make a “stable”
Markov chain.

We are going to discuss several properties of
a Markov chain that will make it become
"“stable”.



Irreducibility

Pisirreducible if

Vi, jel;3m>0 st PI" >0
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Recurrence vs. Transient

Stateiis called recurrent if we keep coming
back to it.

P.(X, =iforinfinitelymany n)=1

And i is called transient if we eventually leave
it forever.

P.(X, =iforinfinitelymany n)=0
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Positive Recurrent

State / is called positive recurrent if the
expected return time to the state is finite.

E,(T,)< o

Where T =inf{n>0:X, =i}

This always true for a recurrent Markov
process with finite states, so we won't give
examples



Aperiodicity

State jis called aperiodic if we could return
back to the same state with any number of
transitions for sufficiently large number of
transitions P” >0
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Properties of processes

Irreducibility — after waiting a certain time, we
have a non-zero probability of getting from any
state to any state

Properties of states
Recurrence — we can always return to this state

Positive recurrence —we expect to return to this
state in a finite amount of time

Aperiodicity — we can return to the same state
after any number of transitions (after a certain m)



Invariant (Equilibrium) Distribution

We can imagine a Markov process that gets
"stuck” in a single distribution
7w =P =P"

Not all Markov processes have an invariant
distribution

States must be positive recurrent
The invariant distribution is an eigenvector of
the transition matrix with eigenvalue one
The invariant distribution is unique



Invariant (Equilibrium) Distribution

Since we are sampling from a Markov
process, it would be nice if we could design
that process to get “stuck” in a distribution
we desire

If the Markov process is in its equilibrium
distribution, every sample from it will be an
independent sample from the invariant
distribution



Convergence to Equilibrium

If a Markov process is irreducible and
aperiodic, it will always converge to its
equilibrium distribution

P(X,=J))—>ran—>o
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Provided we have an irreducible aperiodic
positive recurrent Markov process, it will
converge to an equilibrium distribution and
stay in that distribution



Again Remembering Our Goal

So we can converge to an equilibrium
distribution if our Markov process is designed
correctly.

If we could make a process converge to a

|_

specific distribution, we could sample from
that distribution.

ow can we design a Markov process with a

desired equilibrium distribution?



Time Reversal

What happens if we run a Markov chain at
equilibrium in reverse?
(X,).s0 ~ Markov(r,P)
Y =X,._, ~ Markov(r,P)

Vo

i i~ ij

Proof: need to show ==z

(7P), —Zﬂ'l i Zﬂ, ,J—ﬂZP = x1=r
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Detailed Balance

What if we look for a Markov chain such that

N

pP=P

The Markov chain is the same whether we run
it in the forward or reverse direction

We call such a Markov process reversible
Reversibility implies

7Z'iji = 7Z'iPij

Such a Markov chain is said to be in detailed
balance
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Detailed Balance

As long as our transition matrix is in detailed
balance with our desired distribution, our
Markov process will eventually converge to
our desired distribution
Maybe we can sample from such a process,
even though direct sampling from the desired
distribution is intractable (due to the large
state space)

. P. =P,



P(X

A Markov process is defined by an initial
distribution and a transition matrix

Markov( A4, P)

The Markov property states that the future
depends only on the present

n+1
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A Markov process that is irreducible,
aperiodic, and positively recurrent will
converge to its equilibrium distribution

T =P =nP"
P(X,=J))—>ran—>o
A reversible Markov chain is in detailed
balance
. P. =P,
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Next time...

We will discuss techniques to create Markov
processes that are in detailed balance with a
specified distribution.

In this way, we can solve our sampling
problem.



