More on EM and variational inference

Today

- The connection between EM and variational inference

- Exponential families

Bishop (2006) sections 2.4, 9.3, 9.4, 10.1, 10.4

Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center

http://www.cs.uiuc.edu/class/sp10/cs598jhm

CS598JHM: Advanced NLP 2

Exponential families

- Most parametric distributions that we've seen so far belong to the exponential family of distributions

Distributions in the exponential family are nice because:

- They have **conjugate priors** (other distributions generally don't)

- The likelihood and posterior can be expressed in terms of **sufficient statistics**

Exponential Families

Definition

The exponential family of distributions over x

(x can be scalar or vector; discrete or continuous) given the "natural" parameters η is defined as the set of distributions

 $p(x|\boldsymbol{\eta}) = h(x)g(\boldsymbol{\eta})exp(\boldsymbol{\eta}^T u(x))$

- $g(\eta)$: normalization coefficient: $g(\eta) = (\int x exp(\eta^T u(x)))^{-1}$ -u(x): some function of x

Likelihood

Given a sequence of i.i.d observations $Y = (y_1, ..., y_n)$, the likelihood $P(Y|\eta)$ is:

$$P(Y|\boldsymbol{\eta}) = \left[\prod_{i=1}^{n} h(y_i)\right] g(\boldsymbol{\eta})^n \exp\left(\boldsymbol{\eta}^T \sum_{i=1}^{n} u(y_i)\right)$$

Define a function *t*(*Y*), called **sufficient statistics**:

$$t(Y) = \sum_{i=1}^{n} u(y_i)$$

Thus: $P(Y|\boldsymbol{\eta}) = \left[\prod_{i=1}^{n} h(y_i)\right] g(\boldsymbol{\eta})^n \exp\left(\boldsymbol{\eta}^T t(Y)\right)$
 $\propto g(\boldsymbol{\eta})^n \exp\left(\boldsymbol{\eta}^T t(Y)\right)$

CS598JHM: Advanced NLP 6

Conjugate priors

It is straightforward to define a conjugate prior for members of the exponential family:

Likelihood $P(Y|\boldsymbol{\eta}) \propto g(\boldsymbol{\eta})^n e^{\boldsymbol{\eta}^T t(Y)}$ Prior $P(\boldsymbol{\eta}) \propto g(\boldsymbol{\eta})^\mu e^{\boldsymbol{\eta}^T \nu}$ Posterior $P(\boldsymbol{\eta}|Y) \propto P(\boldsymbol{\eta})P(Y|\boldsymbol{\eta})$ $= g(\boldsymbol{\eta})^{\mu+n} e^{\boldsymbol{\eta}^T(\nu+t(Y))}$

CS598JHM: Advanced NLP 7

The EM algorithm

The goal of EM: Find the maximum likelihood solution for a model consisting of parameters θ , given observed (incomplete) data X and latent variables Z

 $\ln p(\mathbf{X}|\theta) = \ln \left\{ \sum_{\mathbf{X}} p(\mathbf{X}, \mathbf{Z}|\theta) \right\}$

Note: Even if complete likelihood $p(X, Z \mid \theta)$ is in exponential family, incomplete likelihood $p(X \mid \theta)$ may not be.

We just have **incomplete data X**, so don't know $p(X, Z \mid \theta)$. We can only infer **Z** from posterior $p(\mathbf{Z} | \mathbf{X}, \theta)$. We will compute the **expectation** of $p(X, Z \mid \theta)$ wrt. $p(Z \mid X, \theta)$

CS598JHM: Advanced NLP

The EM algorithm

1. Initialization: Choose initial θ^{old}

2. Expectation step:

Compute posterior of the latent variables $p(Z | X, \theta^{old})$

3. Maximization step:

Find θ^{new} which maximize the expected log-likelihood of the joint $p(\mathbf{Z}, \mathbf{X} \mid \theta^{new})$ under $p(\mathbf{Z} \mid \mathbf{X}, \theta^{old})$:

$$\theta^{new} = \arg \max_{\theta} \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\theta)$$

4. Check for convergence. Stop, or set $\theta^{old} := \theta^{new}$ and go to 2.

CS598JHM: Advanced NLP

Another view of EM

 $\ln p(\mathbf{X}|\theta) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta) \right\}$ We want to maximize By the product rule: $\ln p(\mathbf{X}, \mathbf{Z}|\theta) = \ln p(\mathbf{Z}|\mathbf{X}\theta) + \ln p(\mathbf{X}|\theta)$

Define a functional of distribution $q(\mathbf{Z})$: $\mathcal{L}(q, \theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{q(\mathbf{Z})}$ KL(q||p)KL-divergence btw. $q(\mathbf{Z})$ and posterior: $KL(q||p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{Z}|\mathbf{X}, \theta)}{q(\mathbf{Z})}$ $\mathcal{L}(q, \theta)$ $\ln p(\mathbf{X}|\boldsymbol{\theta})$ Thus $\ln p(\mathbf{X}|\theta) = \mathcal{L}(q,\theta) + KL(q||p)$

> CS598JHM: Advanced NLP 11

EM again...

 $\mathcal{L}(q, \theta)$ is a lower bound on log-likelihood $ln p(X | \theta)$

E-step:

Maximize $\mathcal{L}(q, \theta^{old})$ wrt. $q(\mathbf{Z})$, keep θ^{old} fixed. This happens when KL(q||p) = 0.

M-step:

Maximize $\mathcal{L}(q, \theta^{old})$ wrt. θ , keep $q(\mathbf{Z})$ fixed. $\mathcal{L}(q, \theta)$ will increase. Thus $ln p(X | \theta)$ will increase. Hence, now: KL(q||p) > 0

CS598JHM: Advanced NLP 12

Variational inference for Bayesian models

Bayesian model

- In a fully Bayesian model, all parameters $\boldsymbol{\theta}$ are stochastic variables with priors.

- -Now Z consists of latent variables and priors.
- We still want to maximize (incomplete) log-likelihood:

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + KL(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} d\mathbf{Z}$$
$$KL(q||p) = -\int q(\mathbf{Z}) \ln \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} d\mathbf{Z}$$

CS598JHM: Advanced NLP 14

Factorized distributions

Assume *q* factorizes:

$$q(\mathbf{Z}) = \prod_{i=1}^{M} q_i(\mathbf{Z}_i)$$

We still want to maximize $\mathcal{L}(q)$.

We can do this by optimizing with respect to each factor q_i in turn

$$\begin{aligned} \mathcal{L}(q) &= \int \prod_{i} q_{i} \bigg\{ \ln p(\mathbf{X}, \mathbf{Z}) - \sum_{i} \ln q_{i} \bigg\} d\mathbf{Z} \\ &= \int q_{j} \langle \ln p(\mathbf{X}, \mathbf{Z}) \rangle_{i \neq j} + c' \, d\mathbf{Z}_{j} - \int q_{i} \ln q_{j} d_{Z_{j}} + c \end{aligned}$$

CS598JHM: Advanced NLP 15