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More on EM and variational 
inference
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Today
-The connection between EM and variational inference

-Exponential families

Bishop (2006) sections  2.4, 9.3, 9.4, 10.1, 10.4
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Exponential Families
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Exponential families
-Most parametric distributions that weʼve seen so far belong 
to the exponential family of distributions

Distributions in the exponential family are nice because:

-They have conjugate priors (other distributions generally 
donʼt)

-The likelihood and posterior 
can be expressed in terms of sufficient statistics
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Definition
The exponential family of distributions over x 
(x can be scalar or vector; discrete or continuous)
given the “natural” parameters ! 
is defined as the set of distributions

p(x|!) = h(x)g(!)exp(!Tu(x))

-g(!): normalization coefficient: 
g(!) = (!x exp(!Tu(x)))-1

-u(x): some function of x
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Likelihood
Given a sequence of i.i.d observations Y=(y1,.., yn), the 
likelihood P(Y|!) is:

Define a function t(Y), called sufficient statistics:

Thus: 
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Conjugate priors
It is straightforward to define a conjugate prior for members 
of the exponential family:
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Likelihood P (Y |η) ∝ g(η)neηT t(Y )

Prior P (η) ∝ g(η)µeηT ν

Posterior P (η|Y ) ∝ P (η)P (Y |η)

= g(η)µ+neηT (ν+t(Y ))

Expectation 
Maximization

revisited
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The EM algorithm
The goal of EM: Find the maximum likelihood solution for a 
model consisting of parameters θ, given observed 
(incomplete) data X and latent variables Z

Note: Even if complete likelihood p(X,Z | ") is in exponential 
family, incomplete likelihood p(X | ") may not be.

We just have incomplete data X, so donʼt know p(X,Z | ").
We can only infer Z from posterior p(Z | X,").
We will compute the expectation of p(X,Z | ") wrt. p(Z | X, ")
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ln p(X|θ) = ln
� �

Z

p(X,Z|θ)
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The EM algorithm
1. Initialization: Choose initial !old

2. Expectation step: 
Compute posterior of the latent variables p(Z | X, "old)

3. Maximization step:
Find !new which maximize the expected log-likelihood of 
the joint p(Z,X | " new) under p(Z | X, " old):

4. Check for convergence. 
  Stop, or set !old := !new and go to 2.
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θnew = arg max
θ

�

Z

p(Z|X, θold) ln p(X,Z|θ)
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Another view of EM
We want to maximize

By the product rule:

Define a functional of distribution q(Z):

KL-divergence btw. q(Z) and posterior:

Thus
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ln p(X|θ) = ln
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ln p(X|θ)L(q,θ)

KL(q||p)
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EM again...
L(q, !) is a lower bound
on log-likelihood ln p(X |")

E-step: 
Maximize L(q, !old) wrt. q(Z), 
keep !old fixed.
This happens when KL(q||p) = 0.

M-step: 
Maximize L(q, !old) wrt. !,
keep q(Z) fixed.
L(q, !) will increase.
Thus ln p(X |") will increase.
Hence, now: KL(q||p) > 0
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ln p(X|θold)L(q,θold)

KL(q||p) = 0

ln p(X|θnew)L(q,θnew)

KL(q||p)



Variational inference
for Bayesian models
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Bayesian model
- In a fully Bayesian model, all parameters θ are stochastic 
variables with priors.
-Now Z consists of latent variables and priors.
-We still want to maximize (incomplete) log-likelihood:
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ln p(X) = L(q) + KL(q||p)
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Factorized distributions
Assume q factorizes:

We still want to maximize L(q).

We can do this by optimizing with respect to each factor qi 

in turn
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