Today

-The connection between EM and variational inference
-Exponential families

Bishop (2006) sections 2.4, 9.3, 9.4, 10.1, 10.4

CS598JHM: Advanced NLP
2

Exponential families

- Most parametric distributions that we've seen so far belong to the exponential family of distributions

Distributions in the exponential family are nice because:

- They have conjugate priors (other distributions generally don't)
-The likelihood and posterior
can be expressed in terms of sufficient statistics

Definition

The exponential family of distributions over x (x can be scalar or vector; discrete or continuous) given the "natural" parameters η is defined as the set of distributions

$$
p(x \mid \boldsymbol{\eta})=h(x) g(\boldsymbol{\eta}) \exp \left(\boldsymbol{\eta}^{T} u(x)\right)
$$

$-g(\boldsymbol{\eta})$: normalization coefficient:
$g(\boldsymbol{\eta})=\left(\int x \exp \left(\boldsymbol{\eta}^{T} u(x)\right)\right)^{-1}$
$-u(x)$: some function of x

CS598JHM: Advanced NLP
5

Likelihood

Given a sequence of i.i.d observations $Y=\left(y_{l}, . ., y_{n}\right)$, the likelihood $P(Y \mid \boldsymbol{\eta})$ is:
$P(Y \mid \boldsymbol{\eta})=\left[\prod_{i=1}^{n} h\left(y_{i}\right)\right] g(\boldsymbol{\eta})^{n} \exp \left(\boldsymbol{\eta}^{T} \sum_{i=1}^{n} u\left(y_{i}\right)\right)$
Define a function $t(Y)$, called sufficient statistics:

$$
\begin{aligned}
& t(Y)=\sum_{i=1}^{n} u\left(y_{i}\right) \\
& \text { Thus: } \\
& P(Y \mid \boldsymbol{\eta})=\left[\prod_{i=1}^{n} h\left(y_{i}\right)\right] g(\boldsymbol{\eta})^{n} \exp \left(\boldsymbol{\eta}^{T} t(Y)\right) \\
& \propto g(\boldsymbol{\eta})^{n} \exp \left(\boldsymbol{\eta}^{T} t(Y)\right)
\end{aligned}
$$

CS598JHM: Advanced NLP
6

Conjugate priors

It is straightforward to define a conjugate prior for members of the exponential family:

Likelihood $P(Y \mid \boldsymbol{\eta}) \propto g(\boldsymbol{\eta})^{n} e^{\boldsymbol{\eta}^{T} t(Y)}$

$$
\text { Prior } P(\boldsymbol{\eta}) \propto g(\boldsymbol{\eta})^{\mu} e^{\boldsymbol{\eta}^{T} \nu}
$$

Posterior $P(\boldsymbol{\eta} \mid Y) \propto P(\boldsymbol{\eta}) P(Y \mid \boldsymbol{\eta})$

$$
=g(\boldsymbol{\eta})^{\mu+n} e^{\boldsymbol{\eta}^{T}(\nu+t(Y))}
$$

> Expectation Maximization revisited

The EM algorithm

The goal of EM: Find the maximum likelihood solution for a model consisting of parameters θ, given observed (incomplete) data \mathbf{X} and latent variables \mathbf{Z}

$$
\ln p(\mathbf{X} \mid \theta)=\ln \left\{\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \theta)\right\}
$$

Note: Even if complete likelihood $p(\boldsymbol{X}, \boldsymbol{Z} \mid \theta)$ is in exponential family, incomplete likelihood $p(\boldsymbol{X} \mid \theta)$ may not be.

We just have incomplete data \mathbf{X}, so don't know $p(\boldsymbol{X}, \boldsymbol{Z} \mid \theta)$.
We can only infer \mathbf{Z} from posterior $p(\boldsymbol{Z} \mid \boldsymbol{X}, \theta)$.
We will compute the expectation of $p(\boldsymbol{X}, \boldsymbol{Z} \mid \theta)$ wrt. $p(\boldsymbol{Z} \mid \boldsymbol{X}, \theta)$

Another view of EM

We want to maximize

$$
\ln p(\mathbf{X} \mid \theta)=\ln \left\{\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \theta)\right\}
$$

By the product rule: $\quad \ln p(\mathbf{X}, \mathbf{Z} \mid \theta)=\ln p(\mathbf{Z} \mid \mathbf{X} \theta)+\ln p(\mathbf{X} \mid \theta)$
Define a functional of distribution $q(\boldsymbol{Z})$:
$\mathcal{L}(q, \theta)=\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{q(\mathbf{Z})}$
KL-divergence btw. $q(\boldsymbol{Z})$ and posterior:
$K L(q \| p)=-\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{Z} \mid \mathbf{X}, \theta)}{q(\mathbf{Z})}$

Thus $\ln p(\mathbf{X} \mid \theta)=\mathcal{L}(q, \theta)+K L(q \| p)$

The EM algorithm

1. Initialization: Choose initial $\theta^{\text {old }}$
2. Expectation step:

Compute posterior of the latent variables $p\left(\boldsymbol{Z} \mid \boldsymbol{X}, \theta^{\text {old }}\right)$
3. Maximization step:

Find $\theta^{\text {new }}$ which maximize the expected log-likelihood of the joint $p\left(\boldsymbol{Z}, \boldsymbol{X} \mid \theta^{\text {new }}\right)$ under $p\left(\boldsymbol{Z} \mid \boldsymbol{X}, \theta^{\text {old }}\right)$:
$\theta^{\text {new }}=\arg \max _{\theta} \sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \theta^{\text {old }}\right) \ln p(\mathbf{X}, \mathbf{Z} \mid \theta)$
4. Check for convergence.

Stop, or set $\theta^{\text {old }}:=\theta^{\text {new }}$ and go to 2.

CS598JHM: Advanced NLP
10

EM again...

$\mathcal{L}(q, \theta)$ is a lower bound on log-likelihood $\ln p(\boldsymbol{X} \mid \theta)$

E-step:

Maximize $\mathcal{L}\left(q, \theta^{o l d}\right)$ wrt. $q(\boldsymbol{Z})$, keep $\theta^{\text {old }}$ fixed.

This happens when $K L(q \| p)=0$.

M-step:

Maximize $\mathcal{L}\left(q, \theta^{\text {old }}\right)$ wrt. θ,
keep $q(\boldsymbol{Z})$ fixed
$\mathcal{L}(q, \theta)$ will increase.
Thus $\ln p(\boldsymbol{X} \mid \theta)$ will increase.
Hence, now: $K L(q \| p)>0$

CS598JHM: Advanced NLP

Bayesian model

Variational inference for Bayesian models

- In a fully Bayesian model, all parameters θ are stochastic variables with priors.
- Now Z consists of latent variables and priors.
- We still want to maximize (incomplete) log-likelihood:

$$
\ln p(\mathbf{X})=\mathcal{L}(q)+K L(q \| p)
$$

$$
\begin{aligned}
\mathcal{L}(q) & =\int q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} d \mathbf{Z} \\
K L(q \| p) & =-\int q(\mathbf{Z}) \ln \frac{p(\mathbf{Z} \mid \mathbf{X})}{q(\mathbf{Z})} d \mathbf{Z}
\end{aligned}
$$

Factorized distributions

Assume q factorizes:

$$
q(\mathbf{Z})=\prod_{i=1}^{M} q_{i}\left(\mathbf{Z}_{i}\right)
$$

We still want to maximize $\mathcal{L}(q)$.
We can do this by optimizing with respect to each factor q_{i} in turn

$$
\begin{aligned}
\mathcal{L}(q) & =\int \prod_{i} q_{i}\left\{\ln p(\mathbf{X}, \mathbf{Z})-\sum_{i} \ln q_{i}\right\} d \mathbf{Z} \\
& =\int q_{j}\langle\ln p(\mathbf{X}, \mathbf{Z})\rangle_{i \neq j}+c^{\prime} d \mathbf{Z}_{\mathbf{j}}-\int q_{i} \ln q_{j} d_{Z_{j}}+c
\end{aligned}
$$

