CS598JHM: Advanced NLP (Spring '10)

More on EM and variational inference

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center

http://www.cs.uiuc.edu/class/sp10/cs598jhm

Today

- -The connection between EM and variational inference
- Exponential families

Bishop (2006) sections 2.4, 9.3, 9.4, 10.1, 10.4

Exponential Families

Exponential families

 Most parametric distributions that we've seen so far belong to the exponential family of distributions

Distributions in the exponential family are nice because:

- They have conjugate priors (other distributions generally don't)
- The likelihood and posterior can be expressed in terms of **sufficient statistics**

Definition

The **exponential family of distributions** over *x*

(x can be scalar or vector; discrete or continuous) given the "natural" parameters η is defined as the set of distributions

$$p(x|\boldsymbol{\eta}) = h(x)g(\boldsymbol{\eta})exp(\boldsymbol{\eta}^Tu(x))$$

 $-g(\eta)$: normalization coefficient:

$$g(\boldsymbol{\eta}) = (\int x \, exp(\boldsymbol{\eta}^T u(x)))^{-1}$$

-u(x): some function of x

Likelihood

Given a sequence of i.i.d observations $Y=(y_1,...,y_n)$, the likelihood $P(Y|\eta)$ is:

$$P(Y|\boldsymbol{\eta}) = \left[\prod_{i=1}^{n} h(y_i)\right] g(\boldsymbol{\eta})^n \exp\left(\boldsymbol{\eta}^T \sum_{i=1}^{n} u(y_i)\right)$$

Define a function t(Y), called **sufficient statistics**:

$$t(Y) = \sum_{i=1}^{n} u(y_i)$$

Thus:
$$P(Y|\boldsymbol{\eta}) = \left[\prod_{i=1}^n h(y_i)\right] g(\boldsymbol{\eta})^n \exp\left(\boldsymbol{\eta}^T t(Y)\right)$$

$$\propto g(\boldsymbol{\eta})^n \exp\left(\boldsymbol{\eta}^T t(Y)\right)$$

Conjugate priors

It is straightforward to define a conjugate prior for members of the exponential family:

Likelihood
$$P(Y|\boldsymbol{\eta}) \propto g(\boldsymbol{\eta})^n e^{\boldsymbol{\eta}^T t(Y)}$$

Prior $P(\boldsymbol{\eta}) \propto g(\boldsymbol{\eta})^{\mu} e^{\boldsymbol{\eta}^T \nu}$
Posterior $P(\boldsymbol{\eta}|Y) \propto P(\boldsymbol{\eta})P(Y|\boldsymbol{\eta})$
 $= g(\boldsymbol{\eta})^{\mu+n} e^{\boldsymbol{\eta}^T (\nu+t(Y))}$

Expectation Maximization revisited

The EM algorithm

The goal of EM: Find the maximum likelihood solution for a model consisting of parameters θ, given observed (incomplete) data **X** and latent variables **Z**

$$\ln p(\mathbf{X}|\theta) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta) \right\}$$

Note: Even if complete likelihood $p(X,Z \mid \theta)$ is in exponential family, incomplete likelihood $p(X \mid \theta)$ may not be.

We just have **incomplete data X**, so don't know $p(X,Z \mid \theta)$. We can only infer **Z** from posterior $p(Z \mid X,\theta)$. We will compute the **expectation** of $p(X,Z \mid \theta)$ wrt. $p(Z \mid X,\theta)$

The EM algorithm

1. **Initialization:** Choose initial θ^{old}

2. Expectation step:

Compute posterior of the latent variables $p(\mathbf{Z} \mid \mathbf{X}, \theta^{old})$

3. Maximization step:

Find θ^{new} which maximize the expected log-likelihood of the joint $p(\mathbf{Z}, \mathbf{X} \mid \theta^{new})$ under $p(\mathbf{Z} \mid \mathbf{X}, \theta^{old})$:

$$\theta^{new} = \arg \max_{\theta} \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\theta)$$

4. Check for convergence.

Stop, or set $\theta^{old} := \theta^{new}$ and go to 2.

Another view of EM

We want to maximize
$$\ln p(\mathbf{X}|\theta) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta) \right\}$$

By the product rule: $\ln p(\mathbf{X}, \mathbf{Z}|\theta) = \ln p(\mathbf{Z}|\mathbf{X}\theta) + \ln p(\mathbf{X}|\theta)$

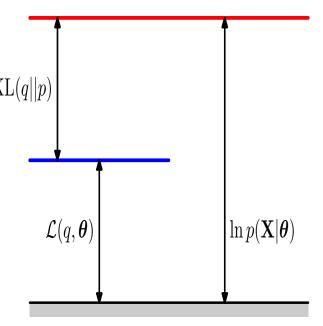
Define a functional of distribution $q(\mathbf{Z})$:

$$\mathcal{L}(q, \theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{q(\mathbf{Z})}$$

KL-divergence btw. $q(\mathbf{Z})$ and posterior:

$$KL(q||p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{Z}|\mathbf{X}, \theta)}{q(\mathbf{Z})}$$

Thus $\ln p(\mathbf{X}|\theta) = \mathcal{L}(q,\theta) + KL(q||p)$



EM again...

 $\mathcal{L}(q, \theta)$ is a lower bound on log-likelihood $ln p(X | \theta)$

KL(q||p) = 0

E-step:

Maximize $\mathcal{L}(q, \theta^{old})$ wrt. $q(\mathbf{Z})$, keep θ^{old} fixed.

This happens when KL(q||p) = 0.

$\mathcal{L}(q, \boldsymbol{\theta}^{\mathrm{old}})$ $\ln p(\mathbf{X}|\boldsymbol{\theta}^{\mathrm{old}})$

M-step:

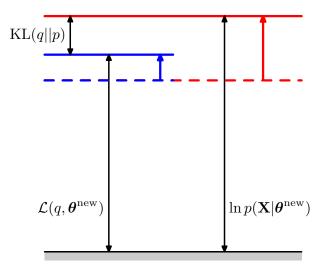
Maximize $\mathcal{L}(q, \theta^{old})$ wrt. θ ,

keep $q(\mathbf{Z})$ fixed.

 $\mathcal{L}(q, \theta)$ will increase.

Thus $\ln p(X | \theta)$ will increase.

Hence, now: KL(q||p) > 0



Variational inference for Bayesian models

Bayesian model

- In a fully Bayesian model, all parameters θ are stochastic variables with priors.
- Now **Z** consists of latent variables and priors.
- We still want to maximize (incomplete) log-likelihood:

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + KL(q||p)$$

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} d\mathbf{Z}$$

$$KL(q||p) = -\int q(\mathbf{Z}) \ln \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} d\mathbf{Z}$$

Factorized distributions

Assume *q* factorizes:

$$q(\mathbf{Z}) = \prod_{i=1}^{M} q_i(\mathbf{Z}_i)$$

We still want to maximize $\mathcal{L}(q)$.

We can do this by optimizing with respect to each factor q_i in turn

$$\mathcal{L}(q) = \int \prod_{i} q_{i} \left\{ \ln p(\mathbf{X}, \mathbf{Z}) - \sum_{i} \ln q_{i} \right\} d\mathbf{Z}$$
$$= \int q_{j} \langle \ln p(\mathbf{X}, \mathbf{Z}) \rangle_{i \neq j} + c' d\mathbf{Z}_{j} - \int q_{i} \ln q_{j} dz_{j} + c$$