CS598JHM: Advanced NLP (Spring '10)

Sampling (Koller/Friedman '09, Ch.12)

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center

http://www.cs.uiuc.edu/class/sp10/cs598jhm

Forward sampling

Sampling methods

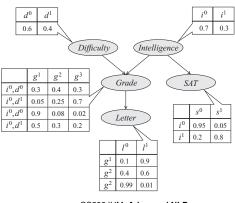
Task: Compute the expectation f(x) relative to P(x)

Approximate this through sampling: Draw a finite number of samples from P(x)

Also known as particle-based approximate inference

CS598JHM: Advanced NLP

The Student network: writing letters of recommendation



CS598JHM: Advanced NLP

Forward sampling in a Bayesian Netowrk

- 1. Sort the nodes $X_1...X_n$ topologically (i.e. such that parents precede their descendants)
- 2. For i=1...n:
 - 2.1. Let u_i be the current assignment to the parents of X_i
 - 2.2. Sample x_i from $P(x_i | u_i)$
- 3. Return $(x_1,...,x_n)$

CS598JHM: Advanced NLP

Likelihood weighting

Task: sample P(y|e) given multiple observations $e_1...e_n$

We can use forward sampling, but need to take the probability $P(e_i|...)$ into account.

Likelihood weighting:

- Weight each sample by $w = \prod_i P(e_i | ...)$
- Estimate conditional probability P(y|e) as a weighted average of samples

CS598JHM: Advanced NLP

Sampling from a conditional distribution P(y|e)

Rejection Sampling

Sample from P(x) and reject when E != e

Problem: P(e) may be very low. Now we require $P(e)^{-1}$ more samples

CS598JHM: Advanced NLP

Likelihood-weighted sampling in a Bayesian Network

- 1. Sort the nodes $X_1...X_n$ topologically (i.e. such that parents precede their descendants)
- 2. Initialize w = 1
- 3. For i=1...n:
 - 3.1. Let u_i be the current assignment to the parents of X_i
 - 3.2. If $x_i \notin e$: sample x_i from $P(x_i \mid u_i)$
 - 3.3. If $x_i \in e$: 1) set x_i to e_i . 2) multiply w by $P(e_i \mid u_i)$
- 4. Return $(x_1,...,x_n)$, w

CS598JHM: Advanced NLP

8

Importance sampling

Likelihood weighted sampling is a special case of **importance sampling**

- We cannot always sample efficiently from P(x)
- But we may be able to **evaluate** P(x) efficiently
- And we may be able to sample efficiently from some **proposal distribution** O(x)
- If $Q(x) \neq 0$ whenever $P(x) \neq 0$, we can compute $E_{P(x)}[f(x)]$

$$E_{P(x)}[f(x)] = E_{Q(x)}\left[f(x)\frac{P(x)}{Q(x)}\right]$$
$$= \sum_{x} Q(x)f(x)\frac{P(x)}{Q(x)}$$
$$= \sum_{x} f(x)P(x)$$

CS598JHM: Advanced NLP

Normalized importance sampling

Instead of P(x), we often know only some **unnormalized** probability P'(x) with P(x) = P'(x)/Z

We may want to sample from P(x | e), but only have P(x,e)

Define a weight w(x) = P'(x)/Q(x)

Now we can compute $E_Q[w(x)]....$

$$E_{Q(x)}[w(x)] = \sum_{x} Q(x) \frac{P'(x)}{Q(x)}$$
$$= \sum_{x} P'(x) = Z$$

.... and hence estimate Z

CS598JHM: Advanced NLP

10

Putting things together...:

Normalized/Weighted importance sampling

$$E_{P(x)}[f(x)] = \sum_{x} f(x)P(x)$$

$$= \sum_{x} Q(x)f(x)\frac{P(x)}{Q(x)}$$

$$= \frac{1}{Z}\sum_{x} Q(x)f(x)\frac{P'(x)}{Q(x)}$$

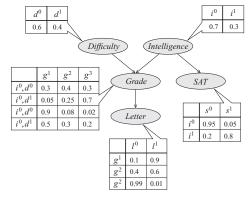
$$= \frac{1}{Z}E_{Q(x)}[f(x)w(x)]$$

$$= \frac{E_{Q(x)}[f(x)w(x)]}{E_{Q(x)}[w(x)]}$$

CS598JHM: Advanced NLP

1

Importance sampling in practice



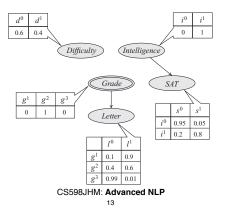
Sample from P(D,I,S,L|G=g2)What is a good proposal distribution Q?

CS598JHM: Advanced NLP

1:

Constructing Q

- The proposal distribution sets all (conditioning) variables in Z to their known value.
- It also decouples all variables in Z from their parents



Limitations of likelihood weighting

- Evidence nodes affect sampling only for their descendants
- -The effect of the evidence on other nodes is only captured by the weight
- When evidence is mostly at the leaf nodes, we effectively sample from the prior distribution (which can be very different from the posterior)
- Markov Chain Monte Carlo sampling methods generate a sequence of samples which may start out as the prior, but will approximate the posterior

CS598JHM: Advanced NLP

14