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Forward/Backward
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HMMs as probabilistic automata
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An HMM defines
- Transition probabilities:

P( ti | ti-1)
- Emission probabilities:

P( wi | ti )
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The Forward algorithm
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Computing P(t,w)

-One path through the trellis = one tag sequence
-We just multiply the probabilities

P (t,w) = P (t1)P (w1|t1)
N�

i=2

P (ti|ti−1)P (wi|ti)
T
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2. Finding P(w) = ∑t P(t,w)

P(qj| q1)

P(wn-1|q1)

We will use the trellis
 to compute P(w)

efficiently.

Let
trellis[n][i] := P(w1..n , tn = i)

(the probability of generating 
w1...n and being in state i) 

P(qj|qT)

P(wn-1|qT)
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3. Finding P(w) = ∑t P(t,w)
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wn-1 wn

t1 P(w1..n-1, tn-1=t1)
... ...
ti P(w1..n-1, tn-1=ti)          
... ...
tT P(w1..n-1, tn-1=ti)

trellis[n][i] = P(wn|ti)
⋅∑j trellis[n-1][j]P(ti |ti)

P

P

P

P (w1..n, tn = ti)� �� �
trellis[n][i]

=
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti)
N�

j=1

P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

= bin

N�

j=1

aji P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

P (w1..n, tn = ti)� �� �
trellis[n][i]

=
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti)
N�

j=1

P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

= bin

N�

j=1

aji P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

P (w1..n, tn = ti)� �� �
trellis[n][i]

=
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti)
N�

j=1

P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

= bin

N�

j=1

aji P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

T

The Viterbi algorithm
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P(wn |qj)

P(qj|qT)

P(wn-1|qT)

P(qj| q1)

P(wn-1|q1)Now, the trellis stores the maximal 
probability of any path ending in ti, not the 

total probability mass of 
all paths ending in ti

Let
MaxTrellis[n][i] := max(P(w1..n , tn = i))
(the highest probability of any tag sequence 

that generates w1...n and ends in state i) 

Finding p* = maxt P(t,w)
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Finding p* = maxt P(t,w)
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wn-1 wn

t1 P(w1..n-1, tn-1=t1)
... ...
ti P(w1..n-1, tn-1=ti)          
... ...
tN P(w1..n-1, tn-1=ti)

P(wn|ti)
⋅Max(trellis[n-1][j]P(ti |ti))

P

P

P

max(P (w1..n, tn = ti)� �� �
maxTrellis[n][i]

) =
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti) max
j=1

�
P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

= bin max
j=1

�
aji P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

max(P (w1..n, tn = ti)� �� �
maxTrellis[n][i]

) =
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti) max
j=1

�
P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

= bin max
j=1

�
aji P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

max(P (w1..n, tn = ti)� �� �
maxTrellis[n][i]

) =
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti) max
j=1

�
P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

= bin max
j=1

�
aji P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

max(P (w1..n, tn = ti)� �� �
maxTrellis[n][i]

) =
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti) max
j=1

�
P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

= bin max
j=1

�
aji P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�
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w1 w2 ... wi-1 wi wi+1 ... wn-1 wn

q1

...

qj

...

qT

Retrieving t* = argmaxt P(t,w)

-By keeping only one backpointer from each cell to the tag in 
the previous column that yields the highest probability, 
we can retrieve the most likely tag sequence 
when weʼre done. 
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The Forward-Backward 
algorithm
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Learning an HMM from unlabeled data

We canʼt count anymore. 
We have to guess how often weʼd expect to see titj  etc.
in our data set. Call this expected count�C(...)�
-Our estimate for the transition probabilities: 

-Our estimate for the emission probabilities:

12

Pierre Vinken , 61 years old , will 
join the board as a nonexecutive 
director Nov. 29 .

Tagset:
NNP: proper noun
CD: numeral,
JJ: adjective,...

P̂ (tj |ti) =
�C(titj)�
�C(ti)�

P̂ (wj |ti) =
�C(wj ti)�
�C(ti)�
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Learning an HMM: 
the EM algorithm 

Initialization:
-Take a data set S
-Guess some initial A0 and B0
Let λi = λ0  = (A0 , B0)  

The Expectation (E) step:
-Use λi to compute�C(t) | λi, S�
The Maximization (M) step:
-Calculate a new HMM  λi+1  using �C(t) | λi, S�
Repeat the E and M steps until λ converges
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How do we compute�C(ti)�?
-Our corpus S consists of K sentences:

       S = { S1: “Pierre Vinken…” 
               S2: “Vinken joined the board…”
               ….  …..
               SK: “Yesterday, the Dow Jones...”}

-We have to sum how often we expect ti in each sentence 
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�C(ti)|S�P =
K

∑
k
�C(ti|Sk)�P
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How do we compute�C(ti) |Sk�

- ti can be assigned to any word in the sentence
(it corresponds to one row in the trellis)
-We have to sum how often we expect ti in each cell 
of this row
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�C(ti)|w1..n�P =
n

∑
j
�C(ti|w j)�P
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-We need to know

-We can use Bayes Rule:

- The forward trellis tells us                             and 

How do we compute�C(ti) |wj�
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w1 ... wi-1 wi wi+1 ... wn

q1

...

qi

...
qN

P (tj = ti|w1...n) =
P (tj = ti,w1...n)

P (w1...n)
P (w1..j, tj = ti)� �� �

trellis[j][i]

P (w1..n)

P (tj = ti|w1..n)
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-We need to know
- The trellis tells us                            

-We can use the Chain rule: 

How do we compute�C(ti) |wj�
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w1 ... wi-1 wi wi+1 ... wn

q1

...

qi

...
qN

P (w1..j, tj = ti)� �� �
trellis[j][i]

P (w1..n, tj = ti)

P (w1..j j+1..n, tj = ti) = P (w1..j, tj = ti)P (wj+1...n|w1..j, tj = ti)
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Computing P(wj+1...n |w1..j, tj = ti )
In our HMM model, words depend only on their tags, thus: 
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P (wj+1...n|w1..j, tj = ti) = P (wj+1...n|tj = ti)

P (wj+1...n|tj = ti) =
�

k

P (tk|ti)P (wj+1|tk)P (wj+2...n|tj+1 = tk)

We can calculate this recursively:
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Putting it all together
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1. In our model, P(w | tj = ti) decomposes into two terms:
a forward and a backward probability

P (w1...j j+1...n|tj = ti)
= P (w1...j|tj = ti)� �� �

Forward probability of w1..j ,ti

× P (wj+1...n|tj = ti)� �� �
Backward probability of wj..n,ti
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P (w1...j|tj = ti)� �� �
Forward probability of w1..j ,ti

=
�

k P (ti|tk)P (wj|tk) P (w1...j−1|tj−1 = tk)
� �� �

Forward probability of w1..j−1,tk

P (wj+1...n|tj = ti)� �� �
Backward probability of wj..n,ti

=
�

k P (tk|ti)P (wj+1|tk) P (wj+2...n|tj+1 = tk)
� �� �

Backward probability of wj+1..n,tk

Forward and backward probabilities
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2. Both can be calculated recursively:

P (w1...j|tj = ti)� �� �
Forward probability of w1..j ,ti

=
�

k P (ti|tk)P (wj|tk) P (w1...j−1|tj−1 = tk)
� �� �

Forward probability of w1..j−1,tk

P (wj+1...n|tj = ti)� �� �
Backward probability of wj..n,ti

=
�

k P (tk|ti)P (wj+1|tk) P (wj+2...n|tj+1 = tk)
� �� �

Backward probability of wj+1..n,tk
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Using the trellis
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3. The trellis tells us already the forward probabilities: 
P (w1...j|tj = ti)� �� �

FWtrellis[j][i]

=
�

k akibkj P (w1...j−1|tj−1 = tk)
� �� �

FWtrellis[j−1][k]

w1 ... wi-1 wi wi+1 ... wn

q1

...

qi

...
qN
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Using the trellis
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4. We can also use it to keep track of the backward probabilities: 

w1 ... wi-1 wi wi+1 ... wn

q1

...

qi

...
qN

P (wj+1...n|tj = ti)� �� �
BWtrellis[j][i]

=
�

k aikbkj+1 P (wj+2...n|tj+1 = tk)
� �� �

BWtrellis[j+1][k]

CS598JHM: Advanced NLP

- The trellis tellls us everything we need to know to compute

How do we compute�C(ti) |wj�
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w1 ... wi-1 wi wi+1 ... wn

q1
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qi
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qN

P (tj = ti|w1...n) =
P (tj = ti,w1...n)

P (w1...n)


