
CS598JHM: Advanced NLP (Spring ʼ10)

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

http://www.cs.uiuc.edu/class/sp10/cs598jhm

Forward/Backward

CS598JHM: Advanced NLP

HMMs as probabilistic automata

DT

JJ

NN

0.7

0.3

0.4

0.6

0.55
VBZ

0.45
0.5

the

0.2
a

0.1every

0.1some 0.1
no

0.01
able

...
...

0.003

zealous

...
...

0.002

zone

0.00024

abandonment

0.001

yields
...
...

0.02

acts

An HMM defines
- Transition probabilities:

P(ti | ti-1)
- Emission probabilities:

P(wi | ti)

2

The Forward algorithm

CS598JHM: Advanced NLP
4

w1 w2 ... wi-1 wi wi+1 ... wn-1 wn

q1

...

qj

...

qT

P(w1|q1)

P(w2|qj)

P(wi |qi)

P(t1=q1)

P(qj | q1)

P(qi | q...)

P(q..| qi)

P(wi+1 |qi

P(wn |qj)

P(qj| q..)

Computing P(t,w)

-One path through the trellis = one tag sequence
-We just multiply the probabilities

P (t,w) = P (t1)P (w1|t1)
N�

i=2

P (ti|ti−1)P (wi|ti)
T

CS598JHM: Advanced NLP
5

w1 w2 ... wi-1 wi wi+1 ... wn-1 wn

q1

...

qj

...

qT

P(wn |qj)

2. Finding P(w) = ∑t P(t,w)

P(qj| q1)

P(wn-1|q1)

We will use the trellis
 to compute P(w)

efficiently.

Let
trellis[n][i] := P(w1..n , tn = i)

(the probability of generating
w1...n and being in state i)

P(qj|qT)

P(wn-1|qT)

CS598JHM: Advanced NLP

3. Finding P(w) = ∑t P(t,w)

6

wn-1 wn

t1 P(w1..n-1, tn-1=t1)
... ...
ti P(w1..n-1, tn-1=ti)
... ...
tT P(w1..n-1, tn-1=ti)

trellis[n][i] = P(wn|ti)
⋅∑j trellis[n-1][j]P(ti |ti)

P

P

P

P (w1..n, tn = ti)� �� �
trellis[n][i]

=
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti)
N�

j=1

P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

= bin

N�

j=1

aji P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

P (w1..n, tn = ti)� �� �
trellis[n][i]

=
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti)
N�

j=1

P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

= bin

N�

j=1

aji P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

P (w1..n, tn = ti)� �� �
trellis[n][i]

=
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti)
N�

j=1

P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

= bin

N�

j=1

aji P (w1..n−1, tn−1 = tj)� �� �
trellis[n−1][j]

T

The Viterbi algorithm

CS598JHM: Advanced NLP
8

w1 w2 ... wi-1 wi wi+1 ... wn-1 wn

q1

...

qj

...

qN

P(wn |qj)

P(qj|qT)

P(wn-1|qT)

P(qj| q1)

P(wn-1|q1)Now, the trellis stores the maximal
probability of any path ending in ti, not the

total probability mass of
all paths ending in ti

Let
MaxTrellis[n][i] := max(P(w1..n , tn = i))
(the highest probability of any tag sequence

that generates w1...n and ends in state i)

Finding p* = maxt P(t,w)

CS598JHM: Advanced NLP

Finding p* = maxt P(t,w)

9

wn-1 wn

t1 P(w1..n-1, tn-1=t1)
... ...
ti P(w1..n-1, tn-1=ti)
... ...
tN P(w1..n-1, tn-1=ti)

P(wn|ti)
⋅Max(trellis[n-1][j]P(ti |ti))

P

P

P

max(P (w1..n, tn = ti)� �� �
maxTrellis[n][i]

) =
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti) max
j=1

�
P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

= bin max
j=1

�
aji P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

max(P (w1..n, tn = ti)� �� �
maxTrellis[n][i]

) =
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti) max
j=1

�
P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

= bin max
j=1

�
aji P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

max(P (w1..n, tn = ti)� �� �
maxTrellis[n][i]

) =
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti) max
j=1

�
P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

= bin max
j=1

�
aji P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

max(P (w1..n, tn = ti)� �� �
maxTrellis[n][i]

) =
�

t1..n|tn=ti

P (w1...n, t1..n)

= P (wn|ti) max
j=1

�
P (ti|tj)P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

= bin max
j=1

�
aji P (w1..n−1, tn−1 = tj)� �� �

maxTrellis[n−1][j]

�

CS598JHM: Advanced NLP

w1 w2 ... wi-1 wi wi+1 ... wn-1 wn

q1

...

qj

...

qT

Retrieving t* = argmaxt P(t,w)

-By keeping only one backpointer from each cell to the tag in
the previous column that yields the highest probability,
we can retrieve the most likely tag sequence
when weʼre done.

10

The Forward-Backward
algorithm

CS598JHM: Advanced NLP

Learning an HMM from unlabeled data

We canʼt count anymore.
We have to guess how often weʼd expect to see titj etc.
in our data set. Call this expected count�C(...)�
-Our estimate for the transition probabilities:

-Our estimate for the emission probabilities:

12

Pierre Vinken , 61 years old , will
join the board as a nonexecutive
director Nov. 29 .

Tagset:
NNP: proper noun
CD: numeral,
JJ: adjective,...

P̂ (tj |ti) =
�C(titj)�
�C(ti)�

P̂ (wj |ti) =
�C(wj ti)�
�C(ti)�

CS598JHM: Advanced NLP

Learning an HMM:
the EM algorithm

Initialization:
-Take a data set S
-Guess some initial A0 and B0
Let λi = λ0 = (A0 , B0)

The Expectation (E) step:
-Use λi to compute�C(t) | λi, S�
The Maximization (M) step:
-Calculate a new HMM λi+1 using �C(t) | λi, S�
Repeat the E and M steps until λ converges

13
CS598JHM: Advanced NLP

How do we compute�C(ti)�?
-Our corpus S consists of K sentences:

 S = { S1: “Pierre Vinken…”
 S2: “Vinken joined the board…”
 …. …..
 SK: “Yesterday, the Dow Jones...”}

-We have to sum how often we expect ti in each sentence

14

�C(ti)|S�P =
K

∑
k
�C(ti|Sk)�P

CS598JHM: Advanced NLP

How do we compute�C(ti) |Sk�

- ti can be assigned to any word in the sentence
(it corresponds to one row in the trellis)
-We have to sum how often we expect ti in each cell
of this row

15

w1 ... wi-1 wi wi+1 ... wn

q1

...
qi

...
qN

�C(ti)|w1..n�P =
n

∑
j
�C(ti|w j)�P

CS598JHM: Advanced NLP

-We need to know

-We can use Bayes Rule:

- The forward trellis tells us and

How do we compute�C(ti) |wj�

16

w1 ... wi-1 wi wi+1 ... wn

q1

...

qi

...
qN

P (tj = ti|w1...n) =
P (tj = ti,w1...n)

P (w1...n)
P (w1..j, tj = ti)� �� �

trellis[j][i]

P (w1..n)

P (tj = ti|w1..n)

CS598JHM: Advanced NLP

-We need to know
- The trellis tells us

-We can use the Chain rule:

How do we compute�C(ti) |wj�

17

w1 ... wi-1 wi wi+1 ... wn

q1

...

qi

...
qN

P (w1..j, tj = ti)� �� �
trellis[j][i]

P (w1..n, tj = ti)

P (w1..j j+1..n, tj = ti) = P (w1..j, tj = ti)P (wj+1...n|w1..j, tj = ti)

CS598JHM: Advanced NLP

Computing P(wj+1...n |w1..j, tj = ti)
In our HMM model, words depend only on their tags, thus:

18

P (wj+1...n|w1..j, tj = ti) = P (wj+1...n|tj = ti)

P (wj+1...n|tj = ti) =
�

k

P (tk|ti)P (wj+1|tk)P (wj+2...n|tj+1 = tk)

We can calculate this recursively:

CS598JHM: Advanced NLP

Putting it all together

19

1. In our model, P(w | tj = ti) decomposes into two terms:
a forward and a backward probability

P (w1...j j+1...n|tj = ti)
= P (w1...j|tj = ti)� �� �

Forward probability of w1..j ,ti

× P (wj+1...n|tj = ti)� �� �
Backward probability of wj..n,ti

CS598JHM: Advanced NLP

P (w1...j|tj = ti)� �� �
Forward probability of w1..j ,ti

=
�

k P (ti|tk)P (wj|tk) P (w1...j−1|tj−1 = tk)
� �� �

Forward probability of w1..j−1,tk

P (wj+1...n|tj = ti)� �� �
Backward probability of wj..n,ti

=
�

k P (tk|ti)P (wj+1|tk) P (wj+2...n|tj+1 = tk)
� �� �

Backward probability of wj+1..n,tk

Forward and backward probabilities

20

2. Both can be calculated recursively:

P (w1...j|tj = ti)� �� �
Forward probability of w1..j ,ti

=
�

k P (ti|tk)P (wj|tk) P (w1...j−1|tj−1 = tk)
� �� �

Forward probability of w1..j−1,tk

P (wj+1...n|tj = ti)� �� �
Backward probability of wj..n,ti

=
�

k P (tk|ti)P (wj+1|tk) P (wj+2...n|tj+1 = tk)
� �� �

Backward probability of wj+1..n,tk

CS598JHM: Advanced NLP

Using the trellis

21

3. The trellis tells us already the forward probabilities:
P (w1...j|tj = ti)� �� �

FWtrellis[j][i]

=
�

k akibkj P (w1...j−1|tj−1 = tk)
� �� �

FWtrellis[j−1][k]

w1 ... wi-1 wi wi+1 ... wn

q1

...

qi

...
qN

CS598JHM: Advanced NLP

Using the trellis

22

4. We can also use it to keep track of the backward probabilities:

w1 ... wi-1 wi wi+1 ... wn

q1

...

qi

...
qN

P (wj+1...n|tj = ti)� �� �
BWtrellis[j][i]

=
�

k aikbkj+1 P (wj+2...n|tj+1 = tk)
� �� �

BWtrellis[j+1][k]

CS598JHM: Advanced NLP

- The trellis tellls us everything we need to know to compute

How do we compute�C(ti) |wj�

23

w1 ... wi-1 wi wi+1 ... wn

q1

...

qi

...
qN

P (tj = ti|w1...n) =
P (tj = ti,w1...n)

P (w1...n)

