CS598JHM: Advanced NLP (Spring '10)

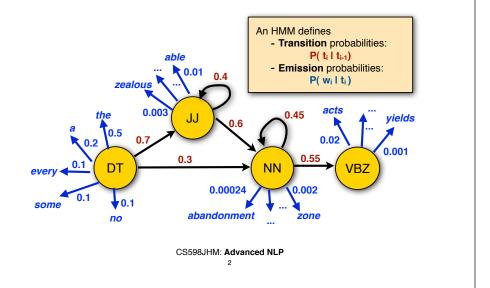
Forward/Backward

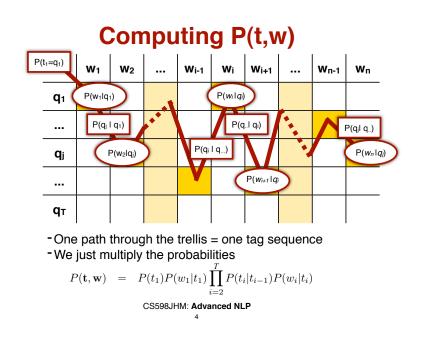
Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center

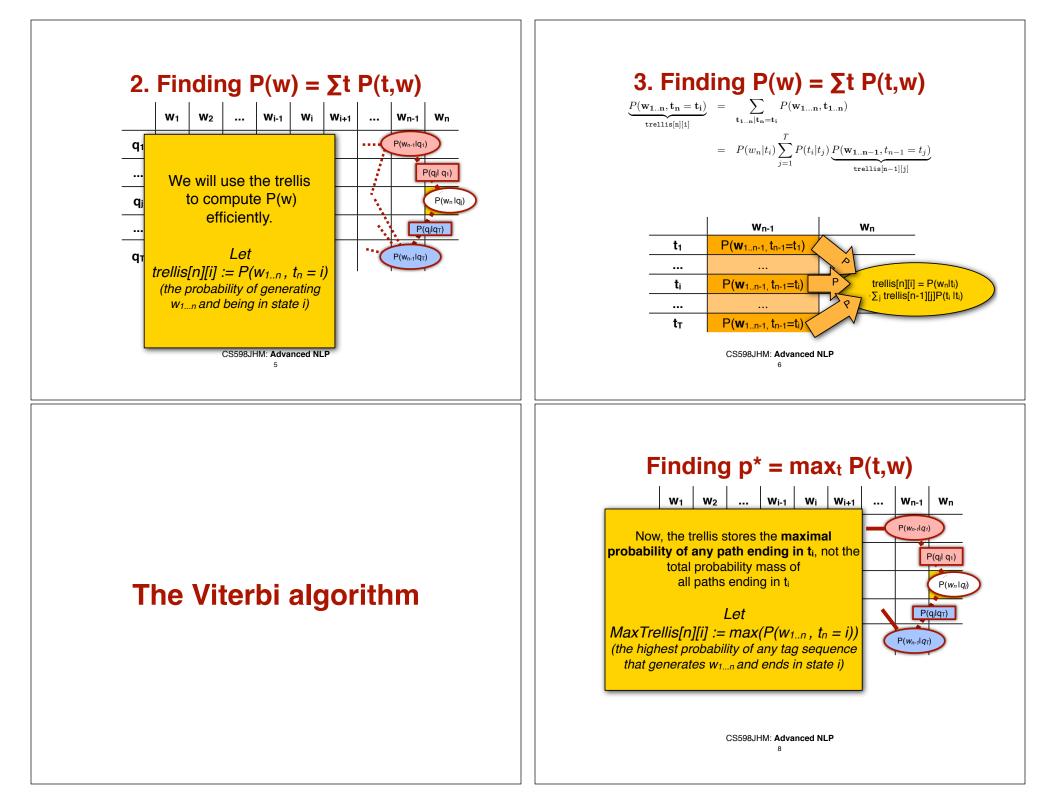
http://www.cs.uiuc.edu/class/sp10/cs598jhm

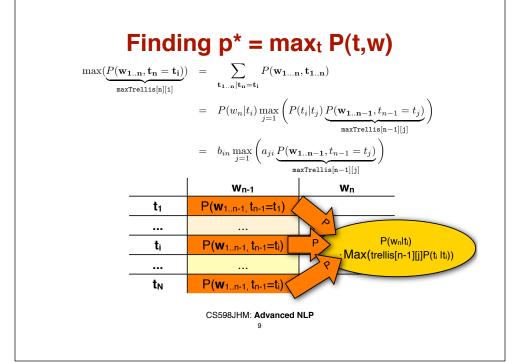
The Forward algorithm

HMMs as probabilistic automata

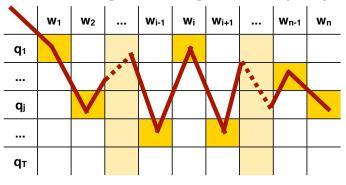








Retrieving $t^* = \operatorname{argmax}_t P(t,w)$



- By keeping only **one backpointer** from each cell to the tag in the previous column that yields the highest probability, we can retrieve the most likely tag sequence when we're done.

> CS598JHM: Advanced NLP 10

Learning an HMM from unlabeled data

Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 . Tagset: NNP: proper noun CD: numeral, JJ: adjective,...

We can't count anymore.

We have to *guess* how often we'd *expect* to see $t_i t_j$ *etc.* in our data set. Call this **expected count** $\langle C(...) \rangle$

- Our estimate for the transition probabilities:

$$\hat{P}(t_j|t_i) = \frac{\langle C(t_i t_j) \rangle}{\langle C(t_i) \rangle}$$

- Our estimate for the emission probabilities:

$$\hat{P}(w_j|t_i) = \frac{\langle C(w_j t_i) \rangle}{\langle C(t_i) \rangle}$$

CS598JHM: Advanced NLP 12

The Forward-Backward algorithm

Learning an HMM: the EM algorithm

Initialization:

- Take a data set \boldsymbol{S} - Guess some initial A_0 and B_0 Let $\lambda_i=\lambda_0=(A_0$, $B_0)$

The Expectation (E) step: - Use λ_i to compute $\langle C(t) | \lambda_i, S \rangle$ The Maximization (M) step: - Calculate a new HMM λ_{i+1} using $\langle C(t) | \lambda_i, S \rangle$ Repeat the E and M steps until λ converges

> CS598JHM: Advanced NLP 13

How do we compute $\langle C(t_i) | S_k \rangle$

	W 1	 Wi-1	Wi	Wi+1	 Wn
q 1					
qi					
q _N					

- t_i can be assigned to any word in the sentence (it corresponds to one row in the trellis)
- We have to sum how often we expect $t_{i} \, \text{in each cell} \\ \text{of this row}$

$$\langle C(t_i)|\mathbf{w}_{1..n}\rangle_P = \sum_{j}^n \langle C(t_i|w_j)\rangle_P$$

How do we compute $\langle C(t_i) \rangle$?

-Our corpus **S** consists of K sentences:

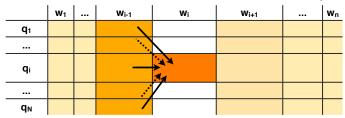
- $\label{eq:second} \begin{array}{l} \textbf{S} = \{ \ S_1: \text{``Pierre Vinken}...\text{''} \\ S_2: \text{``Vinken joined the board}...\text{''} \end{array}$
 - S_{K} : "Yesterday, the Dow Jones..."}

-We have to sum how often we expect t_i in each sentence

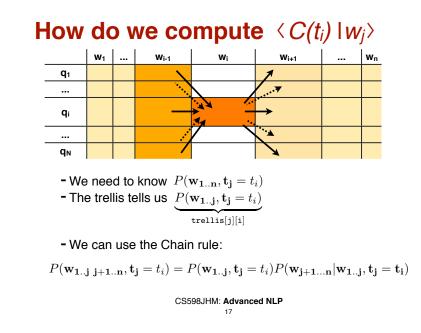
$$\langle C(t_i)|\mathbf{S}\rangle_P = \sum_{k}^{K} \langle C(t_i|S_k)\rangle_P$$

CS598JHM: Advanced NLP

How do we compute $\langle C(t_i) | w_j \rangle$



- We need to know $P(\mathbf{t}_j = t_i | \mathbf{w}_{1..n})$
- We can use Bayes Rule: $P(\mathbf{t}_j = t_i | \mathbf{w}_{1...n}) = \frac{P(\mathbf{t}_j = t_i, \mathbf{w}_{1...n})}{P(\mathbf{w}_{1...n})}$ - The forward trellis tells us $\underbrace{P(\mathbf{w}_{1..j}, \mathbf{t}_j = t_i)}_{\text{trellis}[j][i]}$ and $P(\mathbf{w}_{1..n})$ CS598JHM: Advanced NLP



Computing $P(w_{j+1...n} | w_{1...j}, t_{j} = t_i)$

In our HMM model, words depend only on their tags, thus:

$$P(\mathbf{w_{j+1...n}}|\mathbf{w_{1..j}}, \mathbf{t_j} = \mathbf{t_i}) = P(\mathbf{w_{j+1...n}}|\mathbf{t_j} = t_i)$$

We can calculate this recursively:

$$P(\mathbf{w_{j+1...n}}|\mathbf{t_j} = t_i) = \sum_k P(t_k|t_i)P(\mathbf{w_{j+1}}|t_k)P(\mathbf{w_{j+2...n}}|\mathbf{t_{j+1}} = t_k)$$

CS598JHM: Advanced NLP

Putting it all together

1. In our model, $P(w \mid t_j = t_i)$ decomposes into two terms: a **forward** and a **backward** probability

$$P(\mathbf{w}_{1...j} \mathbf{j}_{j+1...n} | \mathbf{t}_{j} = t_{i})$$

$$= \underbrace{P(\mathbf{w}_{1...j} | \mathbf{t}_{j} = t_{i})}_{\mathbf{t}_{j} \mathbf{t}_{j} \mathbf{t}_{j} \mathbf{t}_{j}} \times \underbrace{P(\mathbf{w}_{j+1...n} | \mathbf{t}_{j} = t_{i})}_{\mathbf{t}_{j} \mathbf{t}_{j} \mathbf{t}_{j} \mathbf{t}_{j} \mathbf{t}_{j} \mathbf{t}_{j}}$$

Forward probability of $\mathbf{w}_{1..j}, t_i$ Backward probability of $\mathbf{w}_{j..n}, t_i$

CS598JHM: Advanced NLP 19

Forward and backward probabilities

2. Both can be calculated recursively:

$$\underbrace{P(\mathbf{w}_{1...j}|\mathbf{t}_{j} = t_{i})}_{\text{Forward probability of } \mathbf{w}_{1...j,t_{i}}} = \sum_{k} P(t_{i}|t_{k})P(\mathbf{w}_{j}|t_{k}) \underbrace{P(\mathbf{w}_{1...j-1}|\mathbf{t}_{j-1} = t_{k})}_{\text{Forward probability of } \mathbf{w}_{1...j} = t_{k}}$$

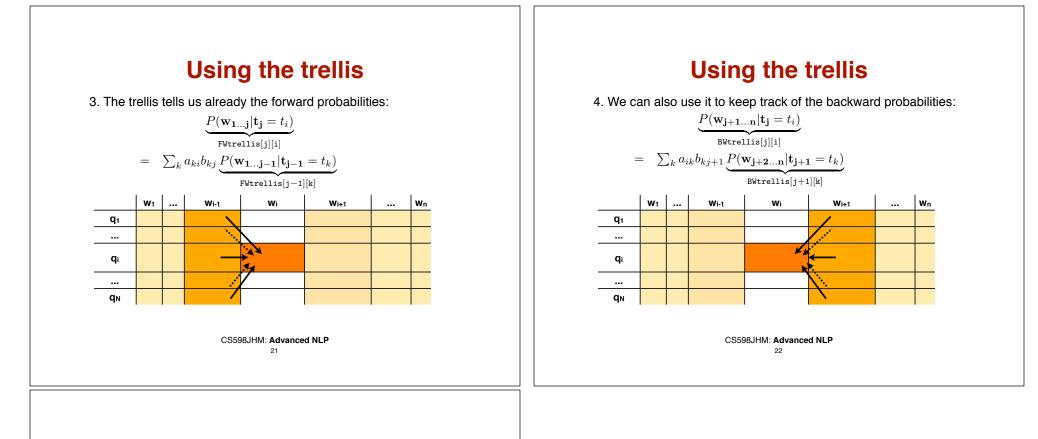
Forward probability of
$$\mathbf{w}_{1..j-1}, t_k$$

$$\underbrace{P(\mathbf{w}_{\mathbf{j+1...n}} | \mathbf{t}_{\mathbf{j}} = t_i)}_{\text{Backward probability of } \mathbf{w}_{j..n}, t_i}$$

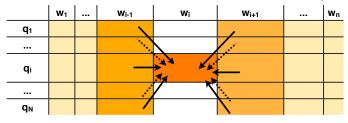
$$= \sum_k P(t_k | t_i) P(\mathbf{w}_{\mathbf{j+1}} | t_k) \underbrace{P(\mathbf{w}_{\mathbf{j+2...n}} | \mathbf{t}_{\mathbf{j+1}} = t_k)}_{P(\mathbf{w}_{\mathbf{j+2...n}} | \mathbf{t}_{\mathbf{j+1}} = t_k)}$$

Backward probability of $\mathbf{w}_{j+1 \dots n}, t_k$

CS598JHM: Advanced NLP 20



How do we compute $\langle C(t_i) | w_j \rangle$



- The trellis tells us everything we need to know to compute

$$P(\mathbf{t}_j = t_i | \mathbf{w}_{1...n}) = \frac{P(\mathbf{t}_j = t_i, \mathbf{w}_{1...n})}{P(\mathbf{w}_{1...n})}$$

CS598JHM: Advanced NLP 23