CS598JHM: Advanced NLP (Spring '10)

Forward/Backward

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
http://www.cs.uiuc.edu/class/sp10/cs598jhm

HMMs as probabilistic automata

CS598JHM: Advanced NLP

The Forward algorithm

Computing $\mathbf{P}(\mathbf{t}, \mathrm{w})$

-One path through the trellis = one tag sequence
-We just multiply the probabilities

$$
P(\mathbf{t}, \mathbf{w})=P\left(t_{1}\right) P\left(w_{1} \mid t_{1}\right) \prod_{i=2}^{T} P\left(t_{i} \mid t_{i-1}\right) P\left(w_{i} \mid t_{i}\right)
$$

CS598JHM: Advanced NLP

2. Finding $P(w)=\Sigma t P(t, w)$

$$
\begin{aligned}
\underbrace{P\left(\mathbf{w}_{\mathbf{1} . . \mathbf{n}}, \mathbf{t}_{\mathbf{n}}=\mathbf{t}_{\mathbf{i}}\right)}_{\text {trellis }[\mathrm{n}][\mathrm{i}]} & =\sum_{\mathbf{t}_{1 . . \mathrm{n}} \mid \mathbf{t}_{\mathbf{n}}=\mathbf{t}_{\mathbf{i}}} P\left(\mathbf{w}_{\mathbf{1} \ldots \mathbf{n}}, \mathbf{t}_{\mathbf{1} . . \mathbf{n}}\right) \\
& =P\left(w_{n} \mid t_{i}\right) \sum_{j=1}^{T} P\left(t_{i} \mid t_{j}\right) \underbrace{P\left(\mathbf{w}_{\mathbf{1} . . \mathbf{n}-\mathbf{1}}, t_{n-1}=t_{j}\right)}_{\operatorname{trellis}[\mathrm{n}-1][\mathrm{j}]}
\end{aligned}
$$

CS598JHM: Advanced NLP

The Viterbi algorithm

Finding $p^{*}=\max _{t} P(t, w)$

Finding $\mathbf{p}^{*}=\max _{\mathrm{t}} \mathbf{P}(\mathbf{t}, \mathrm{w})$

$$
\begin{aligned}
\max (\underbrace{P\left(\mathbf{w}_{\mathbf{1} . . \mathbf{n}}, \mathbf{t}_{\mathbf{n}}=\mathbf{t}_{\mathbf{i}}\right)}_{\text {maxTrellis }[\mathrm{n}][\mathrm{i}]}) & =\sum_{\mathbf{t}_{1 . . \mathbf{n}} \mid \mathbf{t}_{\mathbf{n}}=\mathbf{t}_{\mathbf{i}}} P\left(\mathbf{w}_{\mathbf{1} \ldots \mathbf{n}}, \mathbf{t}_{\mathbf{1} . . \mathbf{n}}\right) \\
& =P\left(w_{n} \mid t_{i}\right) \max _{j=1}(P\left(t_{i} \mid t_{j}\right) \underbrace{P\left(\mathbf{w}_{\mathbf{1} . . \mathbf{n}-\mathbf{1}}, t_{n-1}=t_{j}\right)}_{\operatorname{maxTrellis}[\mathrm{n}-1][\mathrm{j}]}) \\
& =b_{i n} \max _{j=1}(a_{j i} \underbrace{P\left(\mathbf{w}_{\mathbf{1} . . \mathbf{n}-\mathbf{1}}, t_{n-1}=t_{j}\right)}_{\operatorname{maxTrellis}[\mathrm{n}-1][\mathrm{j}]})
\end{aligned}
$$

CS598JHM: Advanced NLP

Retrieving $\mathrm{t}^{*}=\operatorname{argmax}_{\mathrm{t}} \mathrm{P}(\mathrm{t}, \mathrm{w})$

-By keeping only one backpointer from each cell to the tag in the previous column that yields the highest probability, we can retrieve the most likely tag sequence when we're done.

The Forward-Backward algorithm

Learning an HMM from unlabeled data

```
Pierre Vinken , 61 years old , will
join the board as a nonexecutive
director Nov. 29
```


We can't count anymore.

We have to guess how often we'd expect to see $t_{i} t_{j}$ etc. in our data set. Call this expected count 〈C(...)〉

- Our estimate for the transition probabilities:

$$
\hat{P}\left(t_{j} \mid t_{i}\right)=\frac{\left\langle C\left(t_{i} t_{j}\right)\right\rangle}{\left\langle C\left(t_{i}\right)\right\rangle}
$$

- Our estimate for the emission probabilities:

$$
\hat{P}\left(w_{j} \mid t_{i}\right)=\frac{\left\langle C\left(w_{j-} t_{i}\right)\right\rangle}{\left\langle C\left(t_{i}\right)\right\rangle}
$$

Learning an HMM: the EM algorithm

Initialization:

- Take a data set S
- Guess some initial A_{0} and B_{0} Let $\lambda_{i}=\lambda_{0}=\left(A_{0}, B_{0}\right)$

The Expectation (E) step:

- Use λ_{i} to compute $\left\langle\mathrm{C}(\mathrm{t}) \mid \lambda_{\mathrm{i}}, \mathbf{S}\right\rangle$

The Maximization (M) step:

- Calculate a new HMM λ_{i+1} using $\left\langle\mathrm{C}(\mathrm{t}) \mid \lambda_{\mathrm{i}}, \mathbf{S}\right\rangle$

Repeat the E and M steps until λ converges

How do we compute 〈 $\left.C\left(t_{i}\right)\right\rangle$?

- Our corpus \boldsymbol{S} consists of K sentences:

S = \{ S S_{1} : "Pierre Vinken..."
S_{2} : "Vinken joined the board..."
Sк: "Yesterday, the Dow Jones..."\}

-We have to sum how often we expect t_{i} in each sentence

$$
\left\langle C\left(t_{i}\right) \mid \mathbf{S}\right\rangle_{P}=\sum_{k}^{K}\left\langle C\left(t_{i} \mid S_{k}\right)\right\rangle_{P}
$$

How do we compute $\left\langle C\left(t_{i}\right) \mid S_{k}\right\rangle$

	$\mathbf{w}_{\mathbf{1}}$	\ldots	$\mathbf{w}_{\mathbf{i}-\mathbf{1}}$	$\mathbf{w}_{\mathbf{i}}$	$\mathbf{w}_{\mathbf{i}+1}$	\ldots	$\mathbf{w}_{\mathbf{n}}$
$\mathbf{q}_{\mathbf{1}}$							
\ldots							
$\mathbf{q}_{\mathbf{i}}$							
\ldots							
$\mathbf{q}_{\mathbf{N}}$							

- t_{i} can be assigned to any word in the sentence (it corresponds to one row in the trellis)
-We have to sum how often we expect t_{i} in each cell of this row

$$
\left\langle C\left(t_{i}\right) \mid \mathbf{w}_{1 . . n}\right\rangle_{P}=\sum_{j}^{n}\left\langle C\left(t_{i} \mid w_{j}\right)\right\rangle_{P}
$$

How do we compute $\left\langle C\left(t_{i}\right) \mid w_{j}\right\rangle$

	w_{1}	\ldots	w_{i-1}	w_{i}	w_{i+1}	\ldots	w_{n}
\mathbf{q}_{1}							
\ldots			\ddots				
$\mathbf{q}_{\mathbf{i}}$							
\ldots							
$\mathbf{q}_{\mathbf{N}}$							

- We need to know $P\left(\mathbf{t}_{j}=t_{i} \mid \mathbf{w}_{1 . . n}\right)$
- We can use Bayes Rule:

$$
P\left(\mathbf{t}_{j}=t_{i} \mid \mathbf{w}_{1 \ldots n}\right)=\frac{P\left(\mathbf{t}_{\mathbf{j}}=t_{i}, \mathbf{w}_{1 \ldots n}\right)}{P\left(\mathbf{w}_{1 \ldots n}\right)}
$$

- The forward trellis tells us $\underbrace{P\left(\mathbf{w}_{1 . . \mathbf{j}}, \mathbf{t}_{\mathbf{j}}=t_{i}\right)}_{\text {trellis }[\mathbf{j}][\mathrm{i}]}$ and $P\left(\mathbf{w}_{1 . . n}\right)$

CS598JHM: Advanced NLP

How do we compute $\left\langle C\left(t_{i}\right) \mid w_{j}\right\rangle$

	W1	...	$\mathbf{W}_{\text {i-1 }}$	$\mathbf{W i}_{i}$	$\mathbf{W}_{\text {i }+1}$..	\mathbf{W}_{n}
q_{1}							
...							
q_{i}							
\ldots							
q_{N}							

- We need to know $P\left(\mathbf{w}_{1 . . \mathbf{n}}, \mathbf{t}_{\mathbf{j}}=t_{i}\right)$
- The trellis tells us $\underbrace{P\left(\mathbf{w}_{1 . \mathrm{j}}, \mathbf{t}_{\mathbf{j}}=t_{i}\right)}_{\text {trellis } \mathrm{j} \mathrm{j}][\mathrm{i}]}$
- We can use the Chain rule:

$$
P\left(\mathbf{w}_{1 . . \mathbf{j}}^{\mathbf{j}+1 . . \mathbf{n}}, \mathbf{t}_{\mathbf{j}}=t_{i}\right)=P\left(\mathbf{w}_{1 . . \mathbf{j}}, \mathbf{t}_{\mathbf{j}}=t_{i}\right) P\left(\mathbf{w}_{\mathbf{j}+1 \ldots \mathbf{n}} \mid \mathbf{w}_{1 . . \mathbf{j}}, \mathbf{t}_{\mathbf{j}}=\mathbf{t}_{\mathbf{i}}\right)
$$

Computing $P\left(w_{j+1 \ldots n} \mid w_{1 . j,}, \boldsymbol{t}_{j}=t_{i}\right)$

In our HMM model, words depend only on their tags, thus:

$$
P\left(\mathbf{w}_{\mathbf{j}+\mathbf{1} \ldots \mathbf{n}} \mid \mathbf{w}_{\mathbf{1} . . \mathbf{j}}, \mathbf{t}_{\mathbf{j}}=\mathbf{t}_{\mathbf{i}}\right)=P\left(\mathbf{w}_{\mathbf{j}+\mathbf{1} \ldots \mathbf{n}} \mid \mathbf{t}_{\mathbf{j}}=t_{i}\right)
$$

We can calculate this recursively:

$$
P\left(\mathbf{w}_{\mathbf{j}+\mathbf{1} \ldots \mathbf{n}} \mid \mathbf{t}_{\mathbf{j}}=t_{i}\right)=\sum_{k} P\left(t_{k} \mid t_{i}\right) P\left(\mathbf{w}_{\mathbf{j}+\mathbf{1}} \mid t_{k}\right) P\left(\mathbf{w}_{\mathbf{j}+\mathbf{2} \ldots \mathbf{n}} \mid \mathbf{t}_{\mathbf{j}+\mathbf{1}}=t_{k}\right)
$$

Putting it all together

1. In our model, $P\left(\mathbf{w} \mid \mathbf{t}_{\mathbf{j}}=\mathrm{t}_{\mathrm{i}}\right)$ decomposes into two terms: a forward and a backward probability

$$
\begin{aligned}
& P\left(\mathbf{w}_{\mathbf{1} \ldots \mathbf{j} \mathbf{j}+\mathbf{1} \ldots \mathbf{n}} \mid \mathbf{t}_{\mathbf{j}}=t_{i}\right) \\
& =\underbrace{P\left(\mathbf{w}_{\mathbf{1} \ldots \mathbf{j}} \mid \mathbf{t}_{\mathbf{j}}=t_{i}\right)} \times \underbrace{P\left(\mathbf{w}_{\mathbf{j}+\mathbf{1} \ldots \mathbf{n}} \mid \mathbf{t}_{\mathbf{j}}=t_{i}\right)} \\
& \text { Forward probability of } \mathbf{w}_{1 . . j}, t_{i} \quad \text { Backward probability of } \mathbf{w}_{j . . n}, t_{i}
\end{aligned}
$$

Forward and backward probabilities

2. Both can be calculated recursively:

$$
\begin{gathered}
\underbrace{P\left(\mathbf{w}_{\mathbf{1} \ldots \mathbf{j}} \mid \mathbf{t}_{\mathbf{j}}=t_{i}\right)}_{\text {Forward probability of } \mathbf{w}_{1 \ldots j}, t_{i}} \\
=\sum_{k} P\left(t_{i} \mid t_{k}\right) P\left(\mathbf{w}_{\mathbf{j}} \mid t_{k}\right) \underbrace{P\left(\mathbf{w}_{\mathbf{1} \ldots \mathbf{j}-\mathbf{1}} \mid \mathbf{t}_{\mathbf{j}-\mathbf{1}}=t_{k}\right)}_{\text {Forward probability of } \mathbf{w}_{1 \ldots j-1}, t_{k}} \\
=\underbrace{P\left(\mathbf{w}_{\mathbf{j}+\mathbf{1} \ldots \mathbf{n}} \mid \mathbf{t}_{\mathbf{j}}=t_{i}\right)}_{\text {Backward probability of } \mathbf{w}_{j \ldots n}, t_{i}} \\
\sum_{k}^{P\left(\mathbf{w}_{\mathbf{j}+\mathbf{2} \ldots \mathbf{n}} \mid \mathbf{t}_{\mathbf{j}+\mathbf{1}}=t_{k}\right)}
\end{gathered}
$$

CS598JHM: Advanced NLP

Using the trellis

3. The trellis tells us already the forward probabilities:

$$
\begin{gathered}
\underbrace{P\left(\mathbf{w}_{\mathbf{1} \ldots \mathbf{j}} \mid \mathbf{t}_{\mathbf{j}}=t_{i}\right)}_{\text {FWtrellis }[\mathbf{j}][\mathrm{i}]} \\
=\sum_{k} a_{k i} b_{k j} \underbrace{P\left(\mathbf{w}_{\mathbf{1} \ldots \mathbf{j}-\mathbf{1}} \mid \mathbf{t}_{\mathbf{j}-\mathbf{1}}=t_{k}\right)}_{\text {FWtrellis }[\mathbf{j}-1][\mathrm{k}]}
\end{gathered}
$$

CS598JHM: Advanced NLP

Using the trellis

4. We can also use it to keep track of the backward probabilities:

$$
\begin{gathered}
\underbrace{P\left(\mathbf{w}_{\mathbf{j}+\mathbf{1} \ldots \mathbf{n}} \mid \mathbf{t}_{\mathbf{j}}=t_{i}\right)}_{\text {BWtrellis }[\mathrm{j}][\mathrm{i}]} \\
=\sum_{k} a_{i k} b_{k j+1} \underbrace{P\left(\mathbf{w}_{\mathbf{j}+\mathbf{2} \ldots \mathbf{n}} \mid \mathbf{t}_{\mathbf{j}+\mathbf{1}}=t_{k}\right)}_{\text {BWtrellis }[\mathbf{j}+1][\mathrm{k}]}
\end{gathered}
$$

CS598JHM: Advanced NLP

How do we compute $\left\langle C\left(t_{i}\right) \mid w_{j}\right\rangle$

	w_{1}	\ldots	w_{i-1}	w_{i}	w_{i+1}	\ldots	w_{n}
\mathbf{q}_{1}							
\ldots							
q_{i}			\ddots				
\ldots							
$\mathbf{q}_{\mathbf{N}}$							

- The trellis tellls us everything we need to know to compute

$$
P\left(\mathbf{t}_{j}=t_{i} \mid \mathbf{w}_{1 \ldots n}\right)=\frac{P\left(\mathbf{t}_{\mathbf{j}}=t_{i}, \mathbf{w}_{1 \ldots n}\right)}{P\left(\mathbf{w}_{1 \ldots n}\right)}
$$

