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Variational inference for LDA
Another approximate inference method for inferring the 
posterior of the hidden variables given the data:

References (and figures in todayʼs slides): 
- D. Blei and J. Lafferty.   Topic Models.   In A. Srivastava and M. Sahami, 

editors, Text Mining: Theory and Applications. Taylor and Francis, 2009.
- D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of 

Machine Learning Research, 3:993–1022, January 2003.
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TOPIC MODELS 5
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FIGURE 3. Five topics from a 50-topic model fit to the Yale
Law Journal from 1980–2003.

of the properties of the Dirichlet, and replace these modeling choices with

an alternative distribution over the simplex.

2.2. Exploring a corpus with the posterior distribution. LDA provides

a joint distribution over the observed and hidden random variables. The hid-

den topic decomposition of a particular corpus arises from the correspond-

ing posterior distribution of the hidden variables given the D observed doc-

uments �w1:D,

p(�θ1:D, z1:D,1:N , �β1:K | w1:D,1:N , α, η) =(2)

p(�θ1:D, �z1:D, �β1:K | �w1:D, α, η)
�

�β1:K

�
�θ1:D

�
�z p(�θ1:D, �z1:D, �β1:K | �w1:D, α, η)

.

Loosely, this posterior can be thought of the “reversal” of the generative

process described above. Given the observed corpus, the posterior is a dis-

tribution of the hidden variables which generated it.

As discussed in Blei et al. (2003), this distribution is intractable to com-

pute because of the integral in the denominator. Before discussing approxi-

mation methods, however, we illustrate how the posterior distribution gives

a decomposition of the corpus that can be used to better understand and

organize its contents.

The quantities needed for exploring a corpus are the posterior expecta-

tions of the hidden variables. These are the topic probability of a term

�βk,v = E[βk,v | w1:D,1:N ], the topic proportions of a document �θd,k =
E[θd,k | w1:D,1:N ], and the topic assignment of a word �zd,n,k = E[Zd,n =
k | w1:D,1:N ]. Note that each of these quantities is conditioned on the ob-

served corpus.
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Variational inference
Approximate the intractable posterior p(H |D) with a tractable 
distribution q(H |D, V) 

q(H |D, V) is from a family of simpler distributions 
defined by a set of free variational parameters V

Variational inference: 
Find those parameters V which minimize the KL divergence 
KL(q(H |D,V)||p(H |D)) to the true posterior 

- We can do this without having to compute the actual posterior
- We canʼt do this exactly, but we can do it up to a constant that is independent of 

the variational parameters (constant=log likelihood of data under the model)
- The variational parameters V weʼll find will depend on the data D
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Mean field variational distribution
 for LDA

Assumptions:
-All variables are independent of each other.
-Each variable has its own variational parameter

The model: 
-Probability of topic z given document d: q( θd | γd) 
Each document has its own Dirichlet prior γd
-Probability of word w given topic z: q( βz | λz)
Each topic has its own Dirichlet prior λz

-Probability of topic assignment to word wd,n: q( zd,n | φd,n)
Each word position word[d][n] has its own prior φd,n
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LDA:

The variational approximation:

A graphical model
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FIGURE 2. A graphical model representation of the la-
tent Dirichlet allocation (LDA). Nodes denote random vari-
ables; edges denote dependence between random variables.
Shaded nodes denote observed random variables; unshaded
nodes denote hidden random variables. The rectangular
boxes are “plate notation,” which denote replication.

(ii) Draw a word Wd,n ∼ Mult( �βzd,n), Wd,n ∈ {1, . . . , V }.
This is illustrated as a directed graphical model in Figure 2.

The hidden topical structure of a collection is represented in the hidden
random variables: the topics �β1:K , the per-document topic proportions �θ1:D,
and the per-word topic assignments z1:D,1:N . With these variables, LDA
is a type of mixed-membership model (Erosheva et al., 2004). These are
distinguished from classical mixture models (McLachlan and Peel, 2000;
Nigam et al., 2000), where each document is limited to exhibit one topic.
This additional structure is important because, as we have noted, documents
often exhibit multiple topics; LDA can model this heterogeneity while clas-
sical mixtures cannot. Advantages of LDA over classical mixtures has been
quantified by measuring document generalization (Blei et al., 2003).

LDA makes central use of the Dirichlet distribution, the exponential fam-
ily distribution over the simplex of positive vectors that sum to one. The
Dirichlet has density

(1) p(θ | �α) = Γ
��

i αi
�

�
i Γ (αi )

�

i

θαi−1
i .

The parameter �α is a positive K -vector, and Γ denotes the Gamma func-
tion, which can be thought of as a real-valued extension of the factorial
function. A symmetric Dirichlet is a Dirichlet where each component of the
parameter is equal to the same value. The Dirichlet is used as a distribu-
tion over discrete distributions; each component in the random vector is the
probability of drawing the item associated with that component.

LDA contains two Dirichlet random variables: the topic proportions �θ
are distributions over topic indices {1, . . . , K }; the topics �β are distributions
over the vocabulary. In Section 4.2 and Section 4.1, we will examine some

D
N

K
γd θd

φd,n θd,n βk λk



CS598JHM: Advanced NLP

The variational posterior

Inference = minimizing KL divergence: 

The objective function L turns out to be
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and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�θ1:D, z1:D,1:N , �β1:K ) =
K�

k=1

q( �βk | �λk)
D�

d=1

�

q( �θd d | �γd)
N�

n=1

q(zd,n | �φd,n)

�

Each hidden variable is described by a distribution over its type: the topics
�β1:K are each described by a V -Dirichlet distribution �λk ; the topic propor-
tions �θ1:D are each described by a K -Dirichlet distribution �γd ; and the topic
assignment zd,n is described by a K -multinomial distribution �φd,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�γ1:D,�λ1:K , �φ1:D,1:N

KL(q(�θ1:D, z1:D,1:N , �β1:K )||p(�θ1:D, z1:D,1:N , �β1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)
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Specifically, the objective function is

L =
K�

k=1

E[log p( �βk | η)] +
D�

d=1

E[log p(�θd | �α)] +
D�

d=1

N�

n=1

E[log p(Zd,n | �θd)]

+
D�

d=1

N�

n=1

E[log p(wd,n | Zd,n, �β1:K )] + H(q),

(6)

where H denotes the entropy and all expectations are taken with respect to
the variational distribution in Eq. (5). See Blei et al. (2003) for details on
how to compute this function. Optimization proceeds by coordinate ascent,
iteratively optimizing each variational parameter to increase the objective.

Mean field variational inference for LDA is discussed in detail in (Blei
et al., 2003), and good introductions to variational methods include (Jordan
et al., 1999) and (Wainwright and Jordan, 2005). Here, we will focus on the
variational inference algorithm for the LDA model and try to provide more
intuition for how it learns topics from otherwise unstructured text.

One iteration of the mean field variational inference algorithm performs
the coordinate ascent updates in Figure 5, and these updates are repeated
until the objective function converges. Each update has a close relationship
to the true posterior of each hidden random variable conditioned on the
other hidden and observed random variables.

Consider the variational Dirichlet parameter for the kth topic. The true
posterior Dirichlet parameter for a term given all of the topic assignments
and words is a Dirichlet with parameters η + nk,w, where nk,w denotes the
number of times word w is assigned to topic k. (This follows from the
conjugacy of the Dirichlet and multinomial. See (Gelman et al., 1995) for
a good introduction to this concept.) The update in Eq. (8) is nearly this
expression, but with nk,w replaced by its expectation under the variational
distribution. The independence of the hidden variables in the variational
distribution guarantees that such an expectation will not depend on the pa-
rameter being updated. The variational update for the topic proportions in
Eq. (9) is analogous.

The variational update for the distribution of zd,n follows a similar for-
mula. Consider the true posterior of zd,n , given the other relevant hidden
variables and observed word wd,n ,

(7) p(zd,n = k | �θd, wd,n, �β1:K ) ∝ exp{log θd,k + log βk,wd,n}

The update in Eq. (10) is this distribution, with the term inside the expo-
nent replaced by its expectation under the variational distribution. Note
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and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�θ1:D, z1:D,1:N , �β1:K ) =
K�

k=1

q( �βk | �λk)
D�

d=1

�

q( �θd d | �γd)
N�

n=1

q(zd,n | �φd,n)

�

Each hidden variable is described by a distribution over its type: the topics
�β1:K are each described by a V -Dirichlet distribution �λk ; the topic propor-
tions �θ1:D are each described by a K -Dirichlet distribution �γd ; and the topic
assignment zd,n is described by a K -multinomial distribution �φd,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�γ1:D,�λ1:K , �φ1:D,1:N

KL(q(�θ1:D, z1:D,1:N , �β1:K )||p(�θ1:D, z1:D,1:N , �β1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)
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Inference
Inference = minimizing KL divergence: 

7
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Specifically, the objective function is

L =
K�

k=1

E[log p( �βk | η)] +
D�

d=1

E[log p(�θd | �α)] +
D�

d=1

N�

n=1

E[log p(Zd,n | �θd)]

+
D�

d=1

N�

n=1

E[log p(wd,n | Zd,n, �β1:K )] + H(q),

(6)

where H denotes the entropy and all expectations are taken with respect to
the variational distribution in Eq. (5). See Blei et al. (2003) for details on
how to compute this function. Optimization proceeds by coordinate ascent,
iteratively optimizing each variational parameter to increase the objective.

Mean field variational inference for LDA is discussed in detail in (Blei
et al., 2003), and good introductions to variational methods include (Jordan
et al., 1999) and (Wainwright and Jordan, 2005). Here, we will focus on the
variational inference algorithm for the LDA model and try to provide more
intuition for how it learns topics from otherwise unstructured text.

One iteration of the mean field variational inference algorithm performs
the coordinate ascent updates in Figure 5, and these updates are repeated
until the objective function converges. Each update has a close relationship
to the true posterior of each hidden random variable conditioned on the
other hidden and observed random variables.

Consider the variational Dirichlet parameter for the kth topic. The true
posterior Dirichlet parameter for a term given all of the topic assignments
and words is a Dirichlet with parameters η + nk,w, where nk,w denotes the
number of times word w is assigned to topic k. (This follows from the
conjugacy of the Dirichlet and multinomial. See (Gelman et al., 1995) for
a good introduction to this concept.) The update in Eq. (8) is nearly this
expression, but with nk,w replaced by its expectation under the variational
distribution. The independence of the hidden variables in the variational
distribution guarantees that such an expectation will not depend on the pa-
rameter being updated. The variational update for the topic proportions in
Eq. (9) is analogous.

The variational update for the distribution of zd,n follows a similar for-
mula. Consider the true posterior of zd,n , given the other relevant hidden
variables and observed word wd,n ,

(7) p(zd,n = k | �θd, wd,n, �β1:K ) ∝ exp{log θd,k + log βk,wd,n}

The update in Eq. (10) is this distribution, with the term inside the expo-
nent replaced by its expectation under the variational distribution. Note
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and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�θ1:D, z1:D,1:N , �β1:K ) =
K�

k=1

q( �βk | �λk)
D�

d=1

�

q( �θd d | �γd)
N�

n=1

q(zd,n | �φd,n)

�

Each hidden variable is described by a distribution over its type: the topics
�β1:K are each described by a V -Dirichlet distribution �λk ; the topic propor-
tions �θ1:D are each described by a K -Dirichlet distribution �γd ; and the topic
assignment zd,n is described by a K -multinomial distribution �φd,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�γ1:D,�λ1:K , �φ1:D,1:N

KL(q(�θ1:D, z1:D,1:N , �β1:K )||p(�θ1:D, z1:D,1:N , �β1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)

The objective function L turns out to be the sum of the 
expectation of the log probabilities of the posterior under 
the variational parameters and the entropy of q



CS598JHM: Advanced NLP

Variational EM
Initialization:
-Define an initial distribution q

Iterate:
Update each variational parameter
with the expectation of the true posterior
under the variational distribution

Relation between true and variational parameters
-True posterior =
 Dirichlet(hyperparameter + observed  frequencies)
-Variational posterior = 
Dirichlet(hyperparameter + expectation of observed 
frequencies)
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Variational inference algorithm
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One iteration of mean field variational inference for LDA

(1) For each topic k and term v:

(8) λ(t+1)
k,v = η +

D�

d=1

N�

n=1

1(wd,n = v)φ(t)
n,k .

(2) For each document d:

(a) Update γd :

(9) γ (t+1)
d,k = αk + �N

n=1
φ(t)

d,n,k .

(b) For each word n, update �φd,n:

(10) φ(t+1)
d,n,k ∝ exp

�
Ψ (γ (t+1)

d,k ) + Ψ (λ(t+1)
k,wn

) − Ψ (
�V

v=1
λ(t+1)

k,v )
�

,

where Ψ is the digamma function, the first derivative of the

log Γ function.

FIGURE 5. One iteration of mean field variational inference

for LDA. This algorithm is repeated until the objective func-

tion in Eq. (6) converges.

that under the variational Dirichlet distribution, E[log βk,w] = Ψ (λk,w) −
Ψ (

�
v λk,v ), and E[log θd,k] is similarly computed.

This general approach to mean-field variational methods—update each

variational parameter with the parameter given by the expectation of the true

posterior under the variational distribution—is applicable when the condi-

tional distribution of each variable is in the exponential family. This has

been described by several authors (Beal, 2003; Xing et al., 2003; Blei and

Jordan, 2005) and is the backbone of the VIBES framework (Winn and

Bishop, 2005).

Finally, we note that the quantities needed to explore and decompose the

corpus from Section 2.2 are readily computed from the variational distribu-

tion. The per-term topic probabilities are

(11) �βk,v = λk,v�V
v �=1

λk,v �
.

The per-document topic proportions are

(12) �θd,k = γd,k�K
k�=1

γd,k�
.

The per-word topic assignment expectation is

(13) �zd,n,k = φd,n,k .


