CS598JHM: Advanced NLP (Spring '10)

Lecture 4: Naive Bayes (the Frequentist approach and the Bayesian approach)

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center

http://www.cs.uiuc.edu/class/sp10/cs598jhm

The model

Today's class

The task: text classification (sentiment analysis)

Assign (sentiment) label $L_i \in \{+,-\}$ to a document $W_i = (w_{i1}...w_{iN})$. $W_i =$ "This is an amazing product: great battery life, amazing features and it's cheap." $W_2 =$ "How awful. It's buggy, saps power and is way too expensive."

The data:

A set **D** of N documents with (or without) labels

The model:

Naive Baves

Comparing different estimation techniques:

- Supervised MLE
- -Unsupervised MLE with EM
- Unsupervised Bayesian Estimation with Gibbs sampling
- Supervised Bayesian Estimation

CS598JHM: Advanced NLP

A Naive Bayes model

The task:

Assign (sentiment) label $L_i \in \{+,-\}$ to a document W_i .

 W_l = "This is an amazing product: great battery life, amazing features and it's cheap." W_2 = "How awful. It's buggy, saps power and is way too expensive."

The model:

-Use Bayes' Rule:

 $L_i = argmax_L P(L \mid W_i) = argmax_L P(W_i \mid L)P(L)$

- Assume W_i is a "bag of words":

 $W_1 = \{an: 1, and: 1, amazing: 2, battery: 1, cheap: 1, features: 1, great: 1, ...\}$ $W_2 = \{awful: 1, and: 1, buggy: 1, expensive: 1, ...\}$

- $P(W_i | L)$ is a multinomial distribution: W_i ~ $Multinomial(\theta_L)$ We have a vocabulary of V words. Thus: $\theta_L = (\theta_1, ..., \theta_V)$

-P(L) is a Bernoulli distribution: $L \sim Bernoulli(\pi)$

CS598JHM: Advanced NLP

4

Using this model

The model:

 $P(W_i | L)$ is a multinomial distribution: $W_i \sim Multinomial(\theta_L)$ P(L) is a Bernoulli distribution: $L \sim Bernoulli(\pi)$

The "frequentist" approach (MLE):

Estimate π , θ_+ , θ_- , then: $P(L_i = + | W_i) \propto P(W_i | \theta_+) \pi$

The Bayesian approach:

Choose priors for $\pi \sim Beta(\alpha,\beta)$, $\theta_{+} \sim Dirichlet(\gamma)$, $\theta_{-} \sim Dirichlet(\gamma)$ then compute the following expectation:

 $P(L_i = + | \mathbf{W}_i) \propto \iint P(\mathbf{W}_i | \mathbf{\theta}_+) \mathbf{\theta}_+ P(\mathbf{\theta}_+; \mathbf{\gamma}) P(\pi; \alpha, \beta) d\mathbf{\theta}_+ d\pi$

CS598JHM: Advanced NLP

The frequentist approach

Supervised MLE

The data is labeled:

We have a set \mathbf{D} of D documents $W_1...W_d$ with N words Each document W_i has N^i words D^+ documents (subset \mathbf{D}^+) have a positive label and N^+ words D^- documents (subset \mathbf{D}^-) have a negative label and N^- words Each word $w_1...w_i...w_V$ appears $N^+(w_i)$ times in \mathbf{D}^+ , $N^-(w_i)$ times in \mathbf{D}^- Each word $w_1...w_i...w_V$ appears $N^i(w_i)$ times in D^i

MLE: relative frequency estimation

- Labels: $L \sim Bernoulli(\pi)$ with $\pi = D^+/d$

- Words: $W_i \mid + \sim Multinomial(\theta^+)$ with $\theta_i^+ = N^+(w_i)/N^+$

- Words: $W_i \mid - \sim Multinomial(\theta^-)$ with $\theta_i^- = N^-(w_i)/N^-$

Inference with MLE

The inference task:

Given a new document W_{i+1} , what is its label L_{i+1} ?

Word w_i occurs $N_{i+1}(w_i)$ times in W_{i+1} .

$$P(L = +|\mathbf{W}_{i+1}) \propto P(+)P(\mathbf{W}_{i+1}|+)$$

= $\pi \prod_{j=1}^{V} \theta_{+j}^{N_{i+1}(w_j)}$

Unsupervised MLE

The data is unlabeled:

We have a set **D** of *D* documents $W_1...W_d$ with *N* words Each document W_i has N^i words Each word $w_1...w_i...w_V$ appears $N(w_i)$ times in W_i

EM algorithm: "expected rel. freg. estimation"

Initialization: pick initial $\pi^{(0)}$, $\theta^{+(0)}$, $\theta^{-(0)}$

Iterate:

-Labels: $L \sim Bernoulli(\pi)$ with $\pi^{(t)} = \langle N_+ \rangle_{(t-1)} / \langle N \rangle_{(t-1)}$

- Words: $W_i \mid + \sim Multinomial(\theta^+)$ with $\theta_i^{+(t)} = \langle N^+(w_i) \rangle_{(t-1)} / \langle W^+ \rangle_{(t-1)}$

- Words: $W_i \mid - \sim Multinomial(\theta^-)$ with $\theta_i^{-(i)} = \langle N^-(w_i) \rangle_{(i-1)} / \langle W^- \rangle_{(i-1)}$

CS598JHM: Advanced NLP

The Bayesian approach

We need to compute an integral $P(L_i = + | \mathbf{W}_i) \propto \iint P(\mathbf{W}_i | \boldsymbol{\theta}_+) \boldsymbol{\theta}_+ P(\boldsymbol{\theta}_+; \boldsymbol{\gamma}) P(\boldsymbol{\pi}; \boldsymbol{\alpha}, \boldsymbol{\beta}) d\boldsymbol{\theta}_+ d\boldsymbol{\pi}$

Case 1: we have labeled data

Case 2: we do not have labeled data

The Bayesian approach

Bayesian: supervised

The data is labeled:

We have a set **D** of *D* documents $W_1...W_d$ with *N* words Each document W_i has N^i words D^+ documents (subset D^+) have a positive label and N^+ words D^- documents (subset \mathbf{D}^-) have a negative label and N^- words Each word $w_1...w_i...w_l$ appears $N^+(w_i)$ times in \mathbf{D}^+ , $N^-(w_i)$ times in \mathbf{D}^-

Bayesian estimation

-
$$P(+) = (D^+ + \alpha)/(D + \alpha + \beta)$$

-
$$P(w_i \mid +) = (N^+(w_i) + \gamma_i)/(N^+(w_i) + \gamma_0)$$

-
$$P(W_i|+) = \prod P(w_j|+)^{Ni(wj)}$$

Bayesian: unsupervised

We need to approximate the integral/expectation: $P(L_i = + | W_i) \propto \iint P(W_i | \theta_+) \theta_+ P(\theta_+; \gamma) P(\pi; \alpha, \beta) d\theta_+ d\pi$

We can approximate the expectation of f(x) by sampling a finite number of points $x_1...x_N$ according to p(x), evaluating $f(x_i)$ for each of them, and computing the average.

How can we sample according to p(x)?

For us $p(x) = p(D, L, \pi, \theta +, \theta -; \alpha, \beta, \gamma)$

CS598JHM: Advanced NLP

Gibbs sampling

We will visit states according to transition probabilities P(y|x)

That is, we will go from state $x = (x_1, ..., x_k)$ to state $y = (y_1, ..., y_k)$

For i = 1...k: pick y_i by sampling from $P(Y_i | y_1, ..., y_{i-1}, x_{i+1}, ..., x_k)$

$$P(Y_i = y_i \mid y_l, ..., y_{i-1}, x_{i+1}, ..., x_k) = P(y_l, ..., y_{i-1}, y_i, x_{i+1}, ..., x_k)/(y_l, ..., y_{i-1}, x_{i+1}, ..., x_k)$$

Markov Chain Monte Carlo

If we had discrete distribution $p(x) = p(x_1, ..., x_k)$, p(x) has only a finite number of outcomes.

Markov Chain Monte Carlo methods construct a Markov chain whose states are the outcomes of p(x).

The probability of visiting state x_i is $p(x_i)$

We sample from p(x) by visiting a sequence of states from this Markov chain.

CS598JHM: Advanced NLP

Gibbs sampling

For us $p(x) = p(D, L, \pi, \theta +, \theta -; \alpha, \beta, \gamma)$

 π, θ^+, θ^- are real-valued, but they will disappear:

$$P(L_j = + \mid \mathbf{L}^{(-\mathbf{j})}; \alpha, \beta) = \frac{\alpha + N_+^{(-j)}}{\alpha + \beta + N - 1}$$

$$P(w_k = y | D_+^{(-j)}; \gamma) = \frac{N_{D_x^{(-j)}}(y) + \gamma_y}{\gamma_0 + N_{D_x^{(-j)}}}$$

The Gibbs sampler

Initialize:

```
Define priors \alpha,\beta,\,\gamma. Assign initial labels \mathbf{L}^{(0)} to documents
```

Iterate:

```
For each iteration t=1...T:
For every document \textbf{\textit{W}}_i (with current label x=L_i^{(t-1)})
(Temporarily) remove its word counts N_i(w_j) from its class x:
N_{x_i}^{(t-1)}(w_j) = N_x^{(t-1)}(w_j) - N_i^{(t-1)}(w_j)
(Temporarily) remove \textbf{\textit{W}}_i from the documents in its class x:
D_{x_i}^{(t-1)} = D_x^{(t-1)} - 1
Assign a new label x' = L_i^{(t-1)} to \textbf{\textit{W}}_i with
P(L \mid \textbf{\textit{W}}_i, L_0^{(t)}...L_{i-1}^{(t)}, L_{i+1}^{(t-1)}...L_D^{(t-1)}; \alpha, \beta, \gamma)
Add \textbf{\textit{W}}_i to the documents in class x'
Add its word counts N_i(w_j) to word counts for class x'
```

Final estimate:

Use (some of the) snapshots $\mathbf{L}^{(1)}...\mathbf{L}^{(T)}$ to estimate $P(+), P(w_i \mid +), P(w_i \mid -)$

CS598JHM: Advanced NLP

17

Why we don't need to estimate π

$$\begin{split} P(L_j = + \mid \mathbf{L}^{(-j)}; \alpha, \beta) &= \int P(L_j = + \mid \pi) P(\pi \mid \mathbf{L}^{(-j)}; \alpha, \beta) d\pi \\ &= \int \pi P(\pi \mid \mathbf{L}^{(-j)}; \alpha, \beta) d\pi \\ &= \int \pi \frac{\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_+^{(-j)})\Gamma(\beta + N_-^{(-j)})} \pi^{\alpha + N_+^{(-j)} - 1} (1 - \pi)^{\beta + N_-^{(-j)} - 1} d\pi \\ &= \frac{\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_+^{(-j)})\Gamma(\beta + N_-^{(-j)})} \int \pi^{\alpha + N_+^{(-j)} - 1} (1 - \pi)^{\beta + N_-^{(-j)} - 1} d\pi \\ &= \frac{\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_+^{(-j)})\Gamma(\beta + N_-^{(-j)})} \frac{\Gamma(\alpha + N_+^{(-j)} + 1)\Gamma(\beta + N_-^{(-j)})}{\Gamma(\alpha + \beta + N)} \\ &= \frac{\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_+^{(-j)})} \frac{\Gamma(\alpha + N_+^{(-j)} + 1)}{\Gamma(\alpha + \beta + N)} \\ &= \frac{\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_+^{(-j)})} \frac{\Gamma(\alpha + N_+^{(-j)} + 1)}{\Gamma(\alpha + \beta + N - 1)\Gamma(\alpha + \beta + N - 1)} \\ &= \frac{\Gamma(\alpha + N_+^{(-j)})}{\Gamma(\alpha + N_+^{(-j)})\Gamma(\alpha + \beta + N - 1)} \\ &= \frac{(\alpha + N_+^{(-j)})\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_+^{(-j)})\Gamma(\alpha + \beta + N - 1)} \\ &= \frac{\alpha + N_+^{(-j)}}{\alpha + \beta + N - 1} \\ &= \frac{\alpha + N_+^{(-j)}}{\alpha + \beta + N - 1} \end{split}$$

CS598JHM: Advanced NLP

18