Lecture 4:
 Naive Bayes (the Frequentist approach and the Bayesian approach)

Julia Hockenmaier

juliahmr@illinois.edu
3324 Siebel Center
http://www.cs.uiuc.edu/class/sp10/cs598jhm

Today's class

The task: text classification (sentiment analysis) Assign (sentiment) label $L_{i} \in\{+,-\}$ to a document $\boldsymbol{W}_{i}=\left(w_{i l} \ldots w_{i N}\right)$. $\boldsymbol{W}_{l}=$ "This is an amazing product: great battery life, amazing features and it's cheap." $\boldsymbol{W}_{2}=$ "How awful. It's buggy, saps power and is way too expensive."

The data:
A set \boldsymbol{D} of N documents with (or without) labels
The model:
Naive Bayes
Comparing different estimation techniques:

- Supervised MLE
- Unsupervised MLE with EM
- Unsupervised Bayesian Estimation with Gibbs sampling
- Supervised Bayesian Estimation

CS598JHM: Advanced NLP
2

A Naive Bayes model

The task:

Assign (sentiment) label $L_{i} \in\{+,-\}$ to a document \boldsymbol{W}_{i}.
$\boldsymbol{W}_{l}=$ "This is an amazing product: great battery life, amazing features and it's cheap." $\boldsymbol{W}_{2}=$ "How awful. It's buggy, saps power and is way too expensive."

The model:

- Use Bayes' Rule:
$L_{i}=\operatorname{argmax}_{L} P\left(L \mid \boldsymbol{W}_{i}\right)=\operatorname{argmax}_{L} P\left(\boldsymbol{W}_{i} \mid L\right) P(L)$
-Assume \boldsymbol{W}_{i} is a "bag of words":
$\boldsymbol{W}_{l}=\{$ an:1, and: 1, amazing: 2, battery: 1, cheap; 1, features: 1, great: $1, \ldots\}$ $\boldsymbol{W}_{2}=\{$ awful: 1, and: 1, buggy: 1, expensive: 1,...\}
- $P\left(\boldsymbol{W}_{i} \mid L\right)$ is a multinomial distribution: $\boldsymbol{W}_{i} \sim \operatorname{Multinomial}\left(\boldsymbol{\theta}_{L}\right)$

We have a vocabulary of V words. Thus: $\boldsymbol{\theta}_{L}=\left(\theta_{l}, \ldots, \theta_{V}\right)$
$-P(L)$ is a Bernoulli distribution: $L \sim \operatorname{Bernoulli}(\pi)$

Using this model

The model:
$P\left(\boldsymbol{W}_{i} \mid L\right)$ is a multinomial distribution: $\boldsymbol{W}_{i} \sim \operatorname{Multinomial}\left(\boldsymbol{\theta}_{L}\right)$
$P(L)$ is a Bernoulli distribution: $L \sim$ Bernoulli (π)
The "frequentist" approach (MLE):
Estimate $\pi, \boldsymbol{\theta}_{+}, \boldsymbol{\theta}_{-}$, then:
$P\left(L_{i}=+\mid \boldsymbol{W}_{i}\right) \propto P\left(\boldsymbol{W}_{i} \mid \boldsymbol{\theta}_{+}\right) \pi$

The frequentist approach

The Bayesian approach:
Choose priors for $\pi \sim \operatorname{Beta}(\alpha, \beta)$,
$\boldsymbol{\theta}_{+} \sim \operatorname{Dirichlet}(\gamma), \boldsymbol{\theta}_{-} \sim \operatorname{Dirichlet}(\gamma)$ then compute the following expectation:
$P\left(L_{i}=+\mid \boldsymbol{W}_{i}\right) \propto \iint P\left(\boldsymbol{W}_{i} \mid \boldsymbol{\theta}_{+}\right) \boldsymbol{\theta}_{+} P\left(\boldsymbol{\theta}_{+} ; \gamma\right) P(\pi ; \alpha, \beta) d \boldsymbol{\theta}_{+} d \pi$

CS598JHM: Advanced NLP
5

Supervised MLE

The data is labeled:
We have a set \mathbf{D} of D documents $\boldsymbol{W}_{l \ldots} \boldsymbol{W}_{d}$ with N words
Each document W_{i} has N^{i} words
D^{+}documents (subset \mathbf{D}^{+}) have a positive label and N^{+}words D^{-}documents (subset \mathbf{D}^{-}) have a negative label and N^{-}words Each word $w_{l} \ldots w_{i} \ldots w_{V}$ appears $N^{+}\left(w_{i}\right)$ times in $\mathbf{D}^{+}, N^{-}\left(w_{i}\right)$ times in \mathbf{D}^{-} Each word $w_{1} \ldots w_{i} \ldots w_{V}$ appears $N^{j}\left(w_{i}\right)$ times in D^{j}

MLE: relative frequency estimation

- Labels: $L \sim \operatorname{Bernoulli}(\pi)$ with $\pi=D^{+} / d$
- Words: $\boldsymbol{W}_{i} \mid+\sim \operatorname{Multinomial}\left(\boldsymbol{\theta}^{+}\right)$with $\boldsymbol{\theta}_{\boldsymbol{i}}^{+}=N^{+}\left(w_{i}\right) / N^{+}$
- Words: $\boldsymbol{W}_{i} \mid-\sim \operatorname{Multinomial}\left(\boldsymbol{\theta}^{-}\right)$with $\boldsymbol{\theta}_{\boldsymbol{i}}^{-}=N^{-}\left(w_{i}\right) / N^{-}$

Inference with MLE

The inference task:
Given a new document \boldsymbol{W}_{i+1}, what is its label L_{i+1} ?

Word w_{j} occurs $N_{i+1}\left(w_{j}\right)$ times in $\boldsymbol{W}_{i+1 .}$.

$$
\begin{aligned}
P\left(L=+\mid \mathbf{W}_{i+1}\right) & \propto P(+) P\left(\mathbf{W}_{i+1} \mid+\right) \\
& =\pi \prod_{j=1}^{V} \theta_{+j}^{N_{i+1}\left(w_{j}\right)}
\end{aligned}
$$

Unsupervised MLE

The data is unlabeled:

We have a set \mathbf{D} of D documents $\boldsymbol{W}_{l \ldots} \boldsymbol{W}_{d}$ with N words
Each document \boldsymbol{W}_{i} has N^{i} words
Each word $w_{1} \ldots w_{i} \ldots w_{V}$ appears $N^{N}\left(w_{i}\right)$ times in \boldsymbol{W}
EM algorithm: "expected rel. freq. estimation" Initialization: pick initial $\pi^{(0)}, \boldsymbol{\theta}^{+(0)}, \boldsymbol{\theta}^{-(0)}$
Iterate:
-Labels: $L \sim \operatorname{Bernoulli}(\pi)$ with $\left.\pi^{(t)}=\left\langle N_{+}\right\rangle_{(t-1)}\right\rangle\left\rangle_{(t-1)}\right.$

- Words: $\boldsymbol{W}_{i} \mid+\sim \operatorname{Multinomial}\left(\boldsymbol{\theta}^{+}\right)$with $\theta_{i}^{+(t)}=\left\langle N^{+}\left(w_{i}\right)\right\rangle_{(t-1)} /\left\langle W^{+}\right\rangle_{(t-1)}$
- Words: $\boldsymbol{W}_{i} \mid-\sim \operatorname{Multinomial}\left(\boldsymbol{\theta}^{-}\right)$with $\theta_{i}^{-(t)}=\left\langle N^{-}\left(w_{i}\right)\right\rangle_{(i-1)} /\left\langle W^{-}\right\rangle_{(i-1)}$

CS598JHM: Advanced NLP
9

The Bayesian approach

We need to compute an integral
$P\left(L_{i}=+\mid \boldsymbol{W}_{i}\right) \propto \iint P\left(\boldsymbol{W}_{i} \mid \boldsymbol{\theta}_{+}\right) \boldsymbol{\theta}_{+} P\left(\boldsymbol{\theta}_{+} ; \gamma\right) P(\pi ; \alpha, \beta) d \boldsymbol{\theta}_{+} d \pi$

Case 1: we have labeled data

Case 2: we do not have labeled data

The Bayesian approach

Bayesian: supervised

The data is labeled:
We have a set \mathbf{D} of D documents $\boldsymbol{W}_{l \ldots} \boldsymbol{W}_{d}$ with N words Each document W_{i} has N^{i} words D^{+}documents (subset \mathbf{D}^{+}) have a positive label and N^{+}words D^{-}documents (subset \mathbf{D}^{-}) have a negative label and N^{-}words Each word $w_{1 \ldots} w_{i \ldots} w_{V}$ appears $N^{+}\left(w_{i}\right)$ times in $\mathbf{D}^{+}, N^{-}\left(w_{i}\right)$ times in \mathbf{D}^{-}

Bayesian estimation

- $P(+)=\left(D^{+}+\alpha\right) /(D+\alpha+\beta)$
- $P\left(w_{i} \mid+\right)=\left(N^{+}\left(w_{i}\right)+\gamma_{i}\right) /\left(N^{+}\left(w_{i}\right)+\gamma_{0}\right)$
- $P\left(\boldsymbol{W}_{i} \mid+\right)=\prod P\left(w_{j} \mid+\right)^{N i(w j)}$

Bayesian: unsupervised

We need to approximate the integral/expectation:
$P\left(L_{i}=+\mid \boldsymbol{W}_{i}\right) \propto \iint P\left(\boldsymbol{W}_{i} \mid \boldsymbol{\theta}_{+}\right) \boldsymbol{\theta}_{+} P\left(\boldsymbol{\theta}_{+} ; \gamma\right) P(\pi ; \alpha, \beta) d \boldsymbol{\theta}_{+} d \pi$
We can approximate the expectation of $f(x)$ by sampling a finite number of points $x_{1 \ldots} x_{N}$ according to $p(x)$, evaluating $f\left(x_{i}\right)$ for each of them, and computing the average.

How can we sample according to $p(x)$?
For us $p(x)=p(D, \boldsymbol{L}, \pi, \theta+, \theta-; \alpha, \beta, \gamma)$

Markov Chain Monte Carlo

If we had discrete distribution $p(\boldsymbol{x})=p\left(x_{1}, \ldots, x_{k}\right)$, $p(x)$ has only a finite number of outcomes.

Markov Chain Monte Carlo methods construct a Markov chain whose states are the outcomes of $p(\boldsymbol{x})$.

The probability of visiting state x_{j} is $p\left(x_{j}\right)$
We sample from $p(x)$ by visiting a sequence of states from this Markov chain.

CS598JHM: Advanced NLP
14

Gibbs sampling

For us $p(x)=p(D, \boldsymbol{L}, \pi, \theta+, \theta-; \alpha, \beta, \gamma)$
$\pi, \theta+, \theta$ - are real-valued, but they will disappear:

$$
P\left(L_{j}=+\mid \mathbf{L}^{(-\mathbf{j})} ; \alpha, \beta\right)=\frac{\alpha+N_{+}^{(-j)}}{\alpha+\beta+N-1}
$$

$$
P\left(w_{k}=y \mid D_{+}^{(-j)} ; \boldsymbol{\gamma}\right)=\frac{N_{D_{x}^{(-j)}}(y)+\gamma_{y}}{\gamma_{0}+N_{D_{x}^{(-j)}}}
$$

The Gibbs sampler

Initialize:

Define priors α, β, γ.
Assign initial labels $\mathbf{L}^{(0)}$ to documents
Iterate:
For each iteration $t=1 \ldots . T$.
For every document \boldsymbol{W}_{i} (with current label x $\left.=\mathrm{L}_{\mathrm{i}}^{(t-1)}\right)$
(Temporarily) remove its word counts $N_{i}\left(w_{j}\right)$ from its class x:
$N_{x i}{ }^{(t-1)}\left(w_{j}\right)=N_{x}^{(t-1)}\left(w_{j}\right)-N_{i}{ }^{(t-1)}\left(W_{j}\right)$
(Temporarily) remove \boldsymbol{W}_{i} from the documents in its class x: $\mathrm{D}_{\mathrm{xi}}{ }^{(t-1)}=\mathrm{D}_{\mathbf{x}}^{(t-1)}-1$
Assign a new label $\mathrm{x}^{\prime}=\mathrm{L}_{\mathrm{i}}^{(\mathrm{t}-1)}$ to \boldsymbol{W}_{i} with
$\mathrm{P}\left(\mathrm{L} \mid \boldsymbol{W}_{i}, \mathrm{~L}_{0}^{(t)} \ldots \mathrm{L}_{\mathrm{i}-1}{ }^{(t)}, \mathrm{L}_{i+1}{ }^{(t-1)} \ldots \mathrm{LD}^{(t-1)} ; \alpha, \beta, \gamma\right)$
Add \boldsymbol{W}_{i} to the documents in class x'
Add its word counts $N_{i}\left(w_{j}\right)$ to word counts for class x'

Final estimate:

Use (some of the) snapshots $\mathbf{L}^{(1)} \ldots \mathbf{L}^{(T)}$ to estimate $\mathrm{P}(+), \mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid+\right), \mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid-\right)$
CS598JHM: Advanced NLP

Why we don't need to estimate п


```
    = \int\piP(\pi|\mp@subsup{\mathbf{L}}{}{(-j)};\alpha,\beta)d\pi
    = \int\pi}\frac{\Gamma(\alpha+\beta+N-1)}{\Gamma(\alpha+N+- (-j)\Gamma(\beta+\mp@subsup{N}{-}{(-j)})}\mp@subsup{\pi}{}{\alpha+\mp@subsup{N}{+}{(-))-1}(1-\pi\mp@subsup{)}{}{\beta+N(-j)-1}d\pi
    =}\frac{\Gamma(\alpha+\beta+N-1)}{\Gamma(\alpha+\mp@subsup{N}{+}{(-j)})\Gamma(\beta+\mp@subsup{N}{-}{(-j)})}\int\mp@subsup{\pi}{}{\alpha+N+(-j)}(1-\pi\mp@subsup{)}{}{\beta+N-j--j)-1}d
    =}\frac{\Gamma(\alpha+\beta+N-1)}{\Gamma(\alpha+\mp@subsup{N}{+}{(-j)})\Gamma(\beta+\mp@subsup{N}{-}{(-j)})}\frac{\Gamma(\alpha+\mp@subsup{N}{+}{(-j)}+1)\Gamma(\beta+\mp@subsup{N}{-}{(-j)})}{\Gamma(\alpha+\beta+N)
    = }\frac{\Gamma(\alpha+\beta+N-1)}{\Gamma(\alpha+\mp@subsup{N}{+}{(-j)})}\frac{\Gamma(\alpha+\mp@subsup{N}{+}{(-j)}+1)}{\Gamma(\alpha+\beta+N)
    = \Gamma(\alpha+\beta+N-1)
    = }\frac{\Gamma(\alpha+\mp@subsup{N}{+}{(-j)}+1)}{\Gamma(\alpha+\mp@subsup{N}{-(-j)}{(\alpha)}
    = (\alpha+\mp@subsup{N}{+}{(-j)})\Gamma(\alpha+\mp@subsup{N}{+}{(-j)})
    =}\overline{\Gamma(\alpha+\mp@subsup{N}{+}{(-j)})(\alpha+\beta+N-1)
    =}\frac{\alpha+\mp@subsup{N}{+}{(-j)}}{\alpha+\beta+N-1
```

 CS598JHM: Advanced NLP