CS598JHM: Advanced NLP (Spring '10)

Lecture 4: Naive Bayes (the Frequentist approach and the Bayesian approach)

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center

http://www.cs.uiuc.edu/class/sp10/cs598jhm

Today's class

The task: text classification (sentiment analysis)

Assign (sentiment) label $L_i \in \{+,-\}$ to a document $W_i = (w_{i1}...w_{iN})$. $W_1 =$ "This is an amazing product: great battery life, amazing features and it's cheap." $W_2 =$ "How awful. It's buggy, saps power and is way too expensive."

The data:

A set **D** of N documents with (or without) labels

The model:

Naive Bayes

Comparing different estimation techniques:

- Supervised MLE
- Unsupervised MLE with EM
- Unsupervised Bayesian Estimation with Gibbs sampling
- Supervised Bayesian Estimation

The model

A Naive Bayes model

The task:

Assign (sentiment) label $L_i \in \{+, -\}$ to a document W_i .

 W_1 = "This is an amazing product: great battery life, amazing features and it's cheap." W_2 = "How awful. It's buggy, saps power and is way too expensive."

The model:

- -Use Bayes' Rule: $L_i = argmax_L P(L | W_i) = argmax_L P(W_i | L)P(L)$
- Assume W_i is a "bag of words": *W*₁ = {an: 1, and: 1, amazing: 2, battery: 1, cheap: 1, features: 1, great: 1,...} *W*₂ = {awful: 1, and: 1, buggy: 1, expensive: 1,...}
- $P(W_i | L)$ is a multinomial distribution: $W_i \sim Multinomial(\theta_L)$ We have a vocabulary of *V* words. Thus: $\theta_L = (\theta_1, ..., \theta_V)$
- P(L) is a Bernoulli distribution: $L \sim Bernoulli(\pi)$

Using this model

The model:

 $P(W_i | L)$ is a multinomial distribution: $W_i \sim Multinomial(\theta_L)$ P(L) is a Bernoulli distribution: $L \sim Bernoulli(\pi)$

The "frequentist" approach (MLE):

Estimate π , θ_+ , θ_- , then: $P(L_i = + | W_i) \propto P(W_i | \theta_+) \pi$

The Bayesian approach:

Choose priors for $\pi \sim Beta(\alpha,\beta)$, $\theta_+ \sim Dirichlet(\gamma)$, $\theta_- \sim Dirichlet(\gamma)$ then compute the following

expectation:

 $P(\dot{L}_i = + | W_i) \propto \iint P(W_i | \theta_+) \theta_+ P(\theta_+; \gamma) P(\pi; \alpha, \beta) d\theta_+ d\pi$

The frequentist approach

Supervised MLE

The data is labeled:

We have a set **D** of *D* documents $W_1...W_d$ with *N* words Each document W_i has N^i words D^+ documents (subset **D**⁺) have a positive label and N^+ words D^- documents (subset **D**⁻) have a negative label and N^- words Each word $w_1...w_i...w_V$ appears $N^+(w_i)$ times in **D**⁺, $N^-(w_i)$ times in **D**⁻ Each word $w_1...w_i...w_V$ appears $N^j(w_i)$ times in D^j

MLE: relative frequency estimation

- Labels: $L \sim Bernoulli(\pi)$ with $\pi = D^+/d$
- Words: $W_i \mid + \sim Multinomial(\theta^+)$ with $\theta_i^+ = N^+(w_i)/N^+$
- Words: $W_i \mid \sim Multinomial(\theta^-)$ with $\theta_i^- = N(w_i)/N$

Inference with MLE

The inference task:

Given a new document W_{i+1} , what is its label L_{i+1} ?

Word w_j occurs $N_{i+1}(w_j)$ times in W_{i+1} .

$$P(L = + |\mathbf{W}_{i+1}) \propto P(+)P(\mathbf{W}_{i+1}|+)$$
$$= \pi \prod_{j=1}^{V} \theta_{+j}^{N_{i+1}(w_j)}$$

Unsupervised MLE

The data is *un*labeled:

We have a set **D** of *D* documents $W_1...W_d$ with *N* words Each document W_i has N^i words Each word $w_1...w_i...w_V$ appears $N^j(w_i)$ times in W_j

EM algorithm: "expected rel. freq. estimation"

Initialization: pick initial $\pi^{(0)}$, $\theta^{+(0)}$, $\theta^{-(0)}$

Iterate:

- Labels: $L \sim Bernoulli(\pi)$ with $\pi^{(t)} = \langle N_+ \rangle_{(t-1)} / \langle N \rangle_{(t-1)}$
- Words: $W_i \mid + \sim Multinomial(\theta^+)$ with $\theta_i^{+(t)} = \langle N^+(w_i) \rangle_{(t-1)} / \langle W^+ \rangle_{(t-1)}$
- Words: $W_i \mid \sim Multinomial(\theta^-)$ with $\theta_i^{-(t)} = \langle N^-(w_i) \rangle_{(i-1)} / \langle W^- \rangle_{(i-1)}$

The Bayesian approach

The Bayesian approach

We need to compute an integral $P(L_i = + | W_i) \propto \iint P(W_i | \theta_+) \theta_+ P(\theta_+; \gamma) P(\pi; \alpha, \beta) d\theta_+ d\pi$

Case 1: we have labeled data

Case 2: we do not have labeled data

Bayesian: supervised

The data is labeled:

We have a set **D** of *D* documents $W_1...W_d$ with *N* words Each document W_i has N^i words D^+ documents (subset **D**⁺) have a positive label and N^+ words D^- documents (subset **D**⁻) have a negative label and N^- words Each word $w_1...w_i...w_V$ appears $N^+(w_i)$ times in **D**⁺, $N^-(w_i)$ times in **D**⁻

Bayesian estimation

- $P(+) = (D^+ + \alpha)/(D + \alpha + \beta)$
- $P(w_i | +) = (N^+(w_i) + \gamma_i)/(N^+(w_i) + \gamma_0)$
- $P(W_i|+) = \prod P(w_j |+)^{Ni(w_j)}$

Bayesian: unsupervised

We need to approximate the integral/expectation: $P(L_i = + | W_i) \propto \iint P(W_i | \theta_+) \theta_+ P(\theta_+; \gamma) P(\pi; \alpha, \beta) d\theta_+ d\pi$

We can approximate the expectation of f(x) by sampling a finite number of points $x_1...x_N$ according to p(x), evaluating $f(x_i)$ for each of them, and computing the average.

How can we sample according to p(x)?

For us $p(x) = p(D, L, \pi, \theta+, \theta-; \alpha, \beta, \gamma)$

Markov Chain Monte Carlo

If we had discrete distribution $p(x) = p(x_1, ..., x_k)$, p(x) has only a finite number of outcomes.

Markov Chain Monte Carlo methods construct a Markov chain whose states are the outcomes of p(x).

The probability of visiting state x_j is $p(x_j)$

We sample from p(x) by visiting a sequence of states from this Markov chain.

Gibbs sampling

We will visit states according to transition probabilities P(y|x)

That is, we will go from state $x = (x_1, ..., x_k)$ to state $y = (y_1, ..., y_k)$

For i = 1...k: pick y_i by sampling from $P(Y_i | y_1, ..., y_{i-1}, x_{i+1}, ..., x_k)$

$$P(Y_{i} = y_{i} | y_{1}, ..., y_{i-1}, x_{i+1}, ..., x_{k}) = P(y_{1}, ..., y_{i-1}, y_{i}, x_{i+1}, ..., x_{k})/(y_{1}, ..., y_{i-1}, x_{i+1}, ..., x_{k})$$

Gibbs sampling

For us $p(x) = p(D, L, \pi, \theta+, \theta-; \alpha, \beta, \gamma)$

 π, θ^+, θ^- are real-valued, but they will disappear:

$$P(L_j = + \mid \mathbf{L}^{(-\mathbf{j})}; \alpha, \beta) = \frac{\alpha + N_+^{(-j)}}{\alpha + \beta + N - 1}$$

$$P(w_k = y | D_+^{(-j)}; \boldsymbol{\gamma}) = \frac{N_{D_x^{(-j)}}(y) + \gamma_y}{\gamma_0 + N_{D_x^{(-j)}}}$$

The Gibbs sampler

Initialize:

Define priors α, β, γ . Assign initial labels **L**⁽⁰⁾ to documents

Iterate:

For each iteration t = 1...T: For every document W_i (with current label $x=L_i^{(t-1)}$) (Temporarily) remove its word counts $N_i(w_j)$ from its class x: $N_{x\setminus i}^{(t-1)}(w_j) = N_x^{(t-1)}(w_j) - N_i^{(t-1)}(w_j)$ (Temporarily) remove W_i from the documents in its class x: $D_{x\setminus i}^{(t-1)} = D_x^{(t-1)} - 1$ Assign a new label $x' = L_i^{(t-1)}$ to W_i with $P(L \mid W_i, L_0^{(t)}...L_{i-1}^{(t)}, L_{i+1}^{(t-1)}...L_D^{(t-1)}; \alpha, \beta, \gamma)$ Add W_i to the documents in class x' Add its word counts $N_i(w_j)$ to word counts for class x'

Final estimate:

Use (some of the) snapshots $L^{(1)}...L^{(T)}$ to estimate P(+), $P(w_i | +)$, $P(w_i | -)$

Why we don't need to estimate π

$$\begin{split} P(L_{j} = + \mid \mathbf{L}^{(-\mathbf{j})}; \alpha, \beta) &= \int P(L_{j} = + \mid \pi) P(\pi \mid \mathbf{L}^{(-\mathbf{j})}; \alpha, \beta) d\pi \\ &= \int \pi P(\pi \mid \mathbf{L}^{(-\mathbf{j})}; \alpha, \beta) d\pi \\ &= \int \pi \frac{\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_{+}^{(-j)}) \Gamma(\beta + N_{-}^{(-j)})} \pi^{\alpha + N_{+}^{(-j)} - 1} (1 - \pi)^{\beta + N_{-}^{(-j)} - 1} d\pi \\ &= \frac{\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_{+}^{(-j)}) \Gamma(\beta + N_{-}^{(-j)})} \int \pi^{\alpha + N_{+}^{(-j)}} (1 - \pi)^{\beta + N_{-}^{(-j)} - 1} d\pi \\ &= \frac{\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_{+}^{(-j)}) \Gamma(\beta + N_{-}^{(-j)})} \frac{\Gamma(\alpha + N_{+}^{(-j)} + 1) \Gamma(\beta + N_{-}^{(-j)})}{\Gamma(\alpha + \beta + N)} \\ &= \frac{\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_{+}^{(-j)})} \frac{\Gamma(\alpha + N_{+}^{(-j)} + 1)}{\Gamma(\alpha + \beta + N)} \\ &= \frac{\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_{+}^{(-j)})} \frac{\Gamma(\alpha + N_{+}^{(-j)} + 1)}{\Gamma(\alpha + \beta + N - 1)} \\ &= \frac{\Gamma(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_{+}^{(-j)})(\alpha + \beta + N - 1)} \\ &= \frac{\Gamma(\alpha + N_{+}^{(-j)})(\alpha + \beta + N - 1)}{\Gamma(\alpha + N_{+}^{(-j)})(\alpha + \beta + N - 1)} \\ &= \frac{\alpha + N_{+}^{(-j)}}{\alpha + \beta + N - 1} \end{split}$$