CS598JHM: Advanced NLP (Spring '10)

Lecture 3

Julia Hockenmaier

juliahmr@illinois.edu
3324 Siebel Center
http://www.cs.uiuc.edu/class/sp10/cs598jhm

Conjugate priors

The posterior is proportional to prior x likelihood:
$P(\theta \mid D) \propto P(\theta) P(D \mid \theta)$

Conjugate priors:

Posterior is the same kind of distribution as prior.
For binomial likelihood:
conjugate prior $=$ Beta distribution

Parameter estimation

Given data $D=H T T H T T$, what is the probability θ of heads?

- Maximum likelihood estimation (MLE):

Use the θ which has the highest likelihood $\mathrm{P}(\mathrm{D} \mid \theta)$.
$\theta_{M L E}=\arg \max _{\theta} P(D \mid \theta)$

- Maximum a posterior (MAP):

Use the θ which has the highest posterior probability $\mathrm{P}(\theta \mid \mathrm{D})$.
$\theta_{M A P}=\arg \max _{\theta} P(\theta \mid D)=\arg \max _{\theta} P(\theta) P(D \mid \theta)$

-Bayesian estimation:

Integrate over all $\theta=$ compute the expectation of $\boldsymbol{\theta}$ given \mathbf{D} :
$P(x=H \mid D)=\int_{0}^{1} P(x=H \mid \theta) P(\theta \mid D) d \theta=E[\theta \mid D]$
CS598JHM: Advanced NLP
2

The Beta distribution
$P(x \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$

Beta as prior for binomial

Posterior for prior $P(\theta \mid \alpha, \beta)=\operatorname{Beta}(\alpha, \beta)$, and data $D=(H, T)$:

$$
\begin{aligned}
P(\theta \mid \alpha, \beta, H, T) & \propto P(H, T \mid \theta) P(\theta \mid \alpha, \beta) \\
& =\theta^{H+\alpha-1}(1-\theta)^{T+\beta-1} \\
P(\theta \mid \alpha, \beta, H, T) & =\operatorname{Beta}(\alpha+H, \beta+T)
\end{aligned}
$$

Prediction for next coin flip:

$$
\begin{aligned}
P(x=H \mid D) & =\int_{0}^{1} \theta P(\theta \mid D) d \theta \\
& =E[\theta \mid D] \\
& =E[\text { Beta }(H+\alpha, T+\beta)] \\
& =\frac{H+\alpha}{H+\alpha+T+\beta}
\end{aligned}
$$

CS598JHM: Advanced NLP

Multinomial likelihood

-What is the likelihood of $D=x_{1} \ldots x_{i \ldots} x_{N}$?

$$
\begin{aligned}
P(D \mid \boldsymbol{\mu}) & =\prod_{i=1}^{N} P\left(x_{i} \mid \boldsymbol{\mu}\right) \\
& =\prod_{i=1}^{N} \prod_{k=1}^{K} \mu_{k}^{x_{n k}} \quad \begin{array}{l}
\text { Define } \\
m_{k} \quad:=\sum_{n=1}^{N} x_{n k} \\
(=\text { \#observations of xk=1) }
\end{array} \\
& =\prod_{k=1}^{K} \mu_{k}^{\left(\sum_{n} x_{n k}\right)} \begin{array}{l}
\text { The likelihood depends only } \\
\text { on the } m_{k} \mathrm{~S} .
\end{array} \\
& :=\prod_{k=1}^{K} \mu_{k}^{m_{k}} \quad \begin{array}{l}
\text { mare sufficient statistics }
\end{array}
\end{aligned}
$$

Multinomial variables

- In NLP, X is often a discrete random variable that can take one of K states.
-We can represent such X s as \boldsymbol{K}-dimensional vectors in which one $x_{k}=1$ and all other elements are 0
$x=(0,0,1,0,0)^{T}$
- Denote probability of $x_{k}=1$ as μ_{k} with $0 \leq \mu_{k} \leq 1$ and $\sum_{k} \mu_{k}=1$ Then the probability of x is:

$$
P(x \mid \boldsymbol{\mu})=\prod_{k=1}^{K} \mu_{k}^{x_{k}}
$$

CS598JHM: Advanced NLP

Multinomials: Dirichlet prior

The joint distribution of (m_{l}, \ldots, m_{K}) conditioned on $\boldsymbol{\mu}$ and N is a multinomial distribution:

$$
\begin{aligned}
P\left(m_{1}, \ldots, m_{K}=x_{k}\right)= & \frac{N!}{m_{1}!\cdots m_{K}!} \theta_{1}^{m_{1}} \cdots \theta_{K}^{x_{K}} \\
& \text { if } \sum_{i=1}^{K} x_{k}=N
\end{aligned}
$$

Multinomials have a Dirichlet prior:

$$
\operatorname{Dir}\left(\theta \mid \alpha_{1}, \ldots \alpha_{k}\right)=\frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{k}\right)} \prod_{k=1} \theta_{k}^{\alpha_{k}-1}
$$

The Dirichlet

A Dirichlet is confined to a simplex (here $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$)

(Figure from Chris Bishop's PRML book \& website)

CS598JHM: Advanced NLP
9

Dirichlet as conjugate prior

Given a prior $\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha})$ and Data D with sufficient statistics $\boldsymbol{m}=\left(m_{l, \ldots,} m_{K}\right)$, the posterior is

$$
\begin{aligned}
p(\boldsymbol{\mu} \mid D, \boldsymbol{\alpha}) & \propto P(D \mid \boldsymbol{\mu}) P(\boldsymbol{\mu}) \\
& \propto \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1+m_{k}}
\end{aligned}
$$

The normalized posterior is:

$$
\begin{aligned}
p(\boldsymbol{\mu} \mid D, \boldsymbol{\alpha})= & \operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha}+\mathbf{m}) \\
= & \frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{K}+N\right)}{\Gamma \alpha_{1}+m_{1} \ldots \Gamma\left(\alpha_{K}+m_{K}\right)} \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1+m_{k}} \\
& \text { CS598JHM: Advanced NLP }
\end{aligned}
$$

Examples of the Dirichlet

$$
\left\{\alpha_{k}\right\}=0.1
$$

$\left\{\alpha_{k}\right\}=1$
$\left\{\alpha_{k}\right\}=10$

(all figures from Chris Bishop's PRML book \& website) CS598JHM: Advanced NLP

10

MLE vs Bayesian estimate

Maximum likelihood estimate:

Maximize $\ln p(D \mid \boldsymbol{\mu})$ wrt. μ_{k} under the constraint that $\sum \mu_{k}=1$
(...Use Lagrange multipliers...)

$$
\mu_{k}^{M L E}=\frac{m_{k}}{N}
$$

Bayesian estimate:

$$
\mu_{k}^{B E}=\frac{m_{k}+\alpha_{k}}{N+\sum_{k^{\prime}} \alpha_{k}^{\prime}}
$$

