CS598JHM: Advanced NLP (Spring '10)

Lecture 2: Conjugate priors

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
http://www.cs.uiuc.edu/class/sp10/cs598jhm

The binomial distribution

If p is the probability of heads, the probability of getting exactly k heads in n independent yes/no trials is given by the binomial distribution $\operatorname{Bin}(n, p)$:

$$
\begin{aligned}
P(k \text { heads }) & =\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Expectation $E(\operatorname{Bin}(n, p))=n p$
Variance $\operatorname{var}(\operatorname{Bin}(n, p))=n p(1-p)$

Binomial likelihood

What distribution does p (probability of heads) have, given that the data D consists of \# H heads and \#T tails?

Likelihood $\mathrm{L}(\theta ; \mathrm{D}=(\#$ \#eads,\#Tails)) for binomial distribution

Parameter estimation

Given a set of data $D=H T T H T T$, what is the probability θ of heads?

- Maximum likelihood estimation (MLE):

Use the θ which has the highest likelihood $\mathrm{P}(\mathrm{D} \mid \theta)$.

$$
P(x=H \mid D)=P(x=H \mid \theta) \text { with } \theta=\arg \max _{\theta} P(D \mid \theta)
$$

- Bayesian estimation:

Compute the expectation of θ given D:

$$
P(x=H \mid D)=\int_{0}^{1} P(x=H \mid \theta) P(\theta \mid D) d \theta=E[\theta \mid D]
$$

Maximum likelihood estimation

- Maximum likelihood estimation (MLE): find θ which maximizes likelihood $P(D \mid \theta)$.

$$
\begin{aligned}
\theta^{*} & =\arg \max _{\theta} P(D \mid \theta) \\
& =\arg \max _{\theta} \theta^{H}(1-\theta)^{T} \\
& =\frac{H}{H+T}
\end{aligned}
$$

Bayesian statistics

- Data D provides evidence for or against our beliefs. We update our belief θ based on the evidence we see:

$$
\begin{gathered}
P(\theta \mid D) \\
\text { Posterior }
\end{gathered}
$$

Bayesian estimation

Given a prior $P(\theta)$ and a likelihood $P(D \mid \theta)$, what is the posterior $P(\theta \mid D)$?

How do we choose the prior $P(\theta)$?

- The posterior is proportional to prior x likelihood:
$P(\theta \mid D) \propto P(\theta) P(D \mid \theta)$
-The likelihood of a binomial is:

$$
P(D \mid \theta)=\theta^{H}(1-\theta)^{T}
$$

- If prior $P(\theta)$ is proportional to powers of θ and (1- $)$, posterior will also be proportional to powers of θ and (1- θ):
$P(\theta) \propto \theta^{\mathrm{a}}(1-\theta)^{b}$
$\Rightarrow P(\theta \mid D) \propto \theta^{\mathrm{a}}(1-\theta)^{b} \theta^{H}(1-\theta)^{T}=\theta^{a+H}(1-\theta)^{b+T}$

In search of a prior...

We would like something of the form:

$$
P(\theta) \propto \theta^{a}(1-\theta)^{b}
$$

But -- this looks just like the binomial:

$$
\begin{aligned}
P(k \text { heads }) & =\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

\ldots. except that k is an integer and θ is a real with $0<\theta<1$.

The Gamma function

The Gamma function $\Gamma(x)$ is the generalization of the factorial x ! (or rather ($(x-1)$)) to the reals:

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x \quad \text { for } \alpha>0
$$

For $x>1, \Gamma(x)=(x-1) \Gamma(x-1)$.
For positive integers, $\Gamma(x)=(x-1)$!

The Gamma function

CS598JHM: Advanced NLP

The Beta distribution

A random variable $\mathrm{X}(0<\mathrm{x}<1)$ has a Beta distribution with (hyper)parameters $\alpha(\alpha>0)$ and $\beta(\beta>0)$ if X has a continuous distribution with probability density function

$$
P(x \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

The first term is a normalization factor (to obtain a distribution)

$$
\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}
$$

Expectation: $\frac{\alpha}{\alpha+\beta}$

$\operatorname{Beta}(\alpha, \beta)$ with $\alpha>1, \beta>1$

Unimodal

Beta Distribution Beta(α, β)

CS598JHM: Advanced NLP

Beta (α, β) with $\alpha<1, \beta<1$

U-shaped

Beta Distribution Beta (α, β)

CS598JHM: Advanced NLP

$\operatorname{Beta}(\alpha, \beta)$ with $\alpha=\beta$

Symmetric. $\alpha=\beta=1$: uniform

CS598JHM: Advanced NLP

$\operatorname{Beta}(\alpha, \beta)$ with $\alpha<1, \beta>1$

Strictly decreasing
Beta Distribution Beta(α, β)

CS598JHM: Advanced NLP

$\operatorname{Beta}(\alpha, \beta)$ with $\alpha=1, \beta>1$

$\alpha=1,1<\beta<2$: strictly concave.
$\alpha=1, \beta=2$: straight line
$\alpha=1, \beta>2$: strictly convex
Beta Distribution Beta(α, β)

Beta as prior for binomial

Given a prior $P(\theta \mid \alpha, \beta)=\operatorname{Beta}(\alpha, \beta)$ and data $D=(H, T)$, what is our posterior?

$$
\begin{aligned}
P(\theta \mid \alpha, \beta, H, T) & \propto P(H, T \mid \theta) P(\theta \mid \alpha, \beta) \\
& \propto \theta^{H}(1-\theta)^{T} \theta^{\alpha-1}(1-\theta)^{\beta-1} \\
& =\theta^{H+\alpha-1}(1-\theta)^{T+\beta-1}
\end{aligned}
$$

With normalization

$$
P(\theta \mid \alpha, \beta, H, T)=\frac{\Gamma(H+\alpha+T+\beta)}{\Gamma(H+\alpha) \Gamma(T+\beta)} \theta^{H+\alpha-1}(1-\theta)^{T+\beta-1}
$$

$$
\equiv \operatorname{Beta}(\alpha+H, \beta+T)
$$

CS598JHM: Advanced NLP

So, what do we predict?

Our Bayesian estimate for the next coin flip $P(x=1 \mid D)$:

$$
\begin{aligned}
P(x=H \mid D) & =\int_{0}^{1} P(x=H \mid \theta) P(\theta \mid D) d \theta \\
& =\int_{0}^{1} \theta P(\theta \mid D) d \theta \\
& =E[\theta \mid D] \\
& =E[\text { Beta }(H+\alpha, T+\beta)] \\
& =\frac{H+\alpha}{H+\alpha+T+\beta}
\end{aligned}
$$

CS598JHM: Advanced NLP

Conjugate priors

The beta distribution is a conjugate prior to the binomial: the resulting posterior is also a beta distribution.

All members of the exponential family of distributions have conjugate priors.

Examples:

- Multinomial: conjugate prior = Dirichlet
- Gaussian: conjugate prior = Gaussian

Multinomials: Dirichlet prior

Multinomial distribution:

Probability of observing each possible outcome c_{i} exactly X_{i} times in a sequence of n yes/no trials:

$$
P\left(X_{1}=x_{i}, \ldots, X_{K}=x_{k}\right)=\frac{n!}{x_{1}!\cdots x_{K}!} \theta_{1}^{x_{1}} \cdots \theta_{K}^{x_{K}} \quad \text { if } \quad \sum_{i=1}^{N} x_{i}=n
$$

Dirichlet prior:

$$
\operatorname{Dir}\left(\theta \mid \alpha_{1}, \ldots \alpha_{k}\right)=\frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{k}\right)} \prod_{k=1} \theta_{k}^{\alpha_{k}-1}
$$

More about conjugate priors

-We can interpret the hyperparameters as "pseudocounts"

- Sequential estimation (updating counts after each observation) gives same results as batch estimation
- Add-one smoothing (Laplace smoothing) $=$ uniform prior
- On average, more data leads to a sharper posterior (sharper = lower variance)

Today's reading

-Bishop, Pattern Recognition and Machine Learning, Ch. 2

CS598JHM: Advanced NLP

