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Definition of terms

•Public goods are those which can be 
enjoyed by multiple agents 
simultaneously. 

• Indivisible means unable to be divided or 
separated.  
•Example of indivisible public goods: public 
roads, museums… 



Example of public resource allocation
Suppose that the next time you vote, you see that there are four 
referendums for your consideration on the ballot, all of which 
concern the allocation of various public goods in your city: A = a 
new school, B = enlarging the public library, C = renovating the 
community college, and D = improving a museum. And you could 
only vote for only 2 of the four projects. 



Hypothetical results of the example
A little more than half of the population voted for (A, B), a little 
less than half voted for (C, D), and every other combination 
received a small number of votes. Which projects should be 
funded? (Any thoughts?)



Problem definition
If we naïvely tally the votes, we would fund A and B, and ignore 
the preferences of a very large minority. In contrast, funding A 
and C seems like a reasonable compromise. It’s true that it is 
impossible to satisfy all voters. But given a wide enough range of 
possible outcomes, perhaps we can find one that fairly reflects 
the preferences of large subsets of the population. (The main 
purpose of this paper)



Approach to solve the problem 
• This paper models the public goods as elements with feasibility 

constraints on what subsets of elements can be chosen, and 
assume that agents have additive utilities across elements. 

• This paper studies a groupwise fairness notion called the core, 
which generalizes well-studied notions of proportionality and 
Pareto efficiency, and requires that each subset of agents must 
receive an outcome that is fair relative to its size.



Public Goods Model
• A set of voters (or agents) N = [n] 
• Sets of Public Goods: W, and m = |W| 
• Set of feasible outcomes: F ⊆ 2^ W 
• Outcome c: c ∈ F   

• The utility of agent i for element j : uij  

• the utility of agent i under outcome c ∈ F:   
• Assuming agents have additive utilities.



Constraints
Results of the model differ by the feasibility constraints imposed 
on the outcome. There are three types of constraints used in the 
model.  
• Matroid Constraints. 
• In this setting, we are given a matroid M over the ground set W , and 

the feasibility constraint is that the chosen elements must form a 
basis of M 

• Matching Constraints. 
• In this setting, the elements are edges of an undirected graph G(V, E), 

and the feasibility constraint is that the subset of edges chosen must 
form a matching.



Constraints Cont.
• Packing Constraints. 
• In this setting, we impose a set of packing constraints Ax ≤ b, where 

xj∈ {0, 1} is the indicator denoting whether element j is chosen in the 
outcome. 

Remark: 
Packing constraints capture the general Knapsack setting, in 
which there is a set of m items, each item j has an associated 
size sj , and a set of items of total size at most B must be 
selected.



More definitions
• Pareto optimality 

• An outcome c satisfies Pareto optimality if there is no other outcome c′ such 
that ui (c′) ≥ ui (c) for all agents i ∈ N, and at least one inequality is strict. 

• Proportional share 
• The proportional share of an agent i ∈ N is Propi := Vi/n. For β ∈ (0, 1], we 

say that an outcome c satisfies β-proportionality if ui (c) ≥ β · Propi for all 
agents i ∈ N. If β = 1, we simply say that c satisfies proportionality. (Vi  is 
the maximal utility of an agent under all outcomes.) 

• proportionality up to one issue 
• an outcome c of a public decision making problem satisfies proportionality 

up to one issue if for all agents i ∈ N, there exists an outcome c ′ that 
differs from c only on a single issue and ui (c ′) ≥ Prop i



More definitions Cont.
• core outcome 
• Given an outcome c, we say that a set of agents S ⊆ N form a blocking 

coalition if there exists an outcome c ′ such that (|S|/n) · ui (c ′) ≥ ui 
(c) for all i ∈ S and at least one inequality is strict. We say that an 
outcome c is a core outcome if it admits no blocking coalitions. 

Remark: non-existence of blocking coalitions of size 1 is equivalent to 
proportionality, and non-existence of blocking coalitions of size n is 
equivalent to Pareto optimality. Therefore, a core outcome is both 
proportional and Pareto optimal.



More definitions Cont.
• (δ, α)-core outcome 
• For δ,α ≥ 0, an outcome c is a (δ, α)-core outcome if there exists no 

set of agents S ⊆ N and outcome c ′ such that for all ∈ S, and at least 
one inequality is strict. 

• Remark: (0, 0)-core outcome is simply a core outcome. (δ, 0)-core 
outcome satisfies δ-proportionality.



Main focus on solving the problem.
• Finding integer allocations that approximate the core. 
• How to find a core? 

• Using Nash social welfare, which is the product of agent utilities. 
• Why finding the core.  

• Core is a generalization of proportionality and Pareto efficiency. And 
approximations of the core provide reasonable fairness guarantees in allocating 
public goods.



Integer Nash Welfare
• The integer Max Nash Welfare (MNW) solution is an outcome c 

that maximizes sum of lnui(c) for i ∈N. More technically, if 
every integer allocation gives zero utility to at least one agent, 
the MNW solution first chooses a largest set S of agents that 
can be given non-zero utility simultaneously, and maximizes 
the product of utilities to agents in S.



Can INW approximate the core?
Consider an instance of public decision making with m issues and 
two alternatives per issue. Specifically, each issue t has two 
alternatives             ,            , and exactly one of them needs to 
be chosen. There are two sets of agents X = {1, . . . ,m} and Y = 
{m + 1, . . . , 2m}. Every agent i ∈ X has                   , and utility 
0 for all other alternatives. Every agent i ∈ Y has                 and                      
for all issues i ∈ {1, 2, . . . ,m}.



Can INW approximate the core? Cont.



Can INW approximate the core? Cont.
• The integer MNW outcome is c =                          because any 

other outcome gives zero utility 1 to at least one agent. 
However, coalition Y can deviate, choose outcome c ′ =                           
, and achieve utility m for each agent in Y. For c to be a (δ,α)-
core outcome, we need 

Hence, c is not a (δ,α)-core outcome for any δ = o(m) and α = 
o(m). Therefore INW may not have no integral outcome in the 
core.



How to approximate the core?
• Using the constraints introduced before.  
• Having a smooth Nash welfare objective function. 
• Types of constraints: 

• Matroid constraints. 

• Matching constraints. 

• Packing constraints.



Smooth Nash Welfare
• Why Smooth Nash Welfare? 

• One issue with the Nash welfare objective is that it is sensitive to 
agents receiving zero utility. INW solution first chooses a largest set S 
of agents that can be given non-zero utility simultaneously, and 
maximizes the product of utilities to agents in S. 

• What is Smooth Nash Welfare? 

where l is >=0 as a parameter. 
 Remark: Showed in other papers, the objective function is NP-hard to 
optimize.



Influence of constraints
• Matroid constraints 
• The paper shows that with the correct choice of l, the that local 

search procedures for the smooth Nash welfare objective yield to a (0, 
2)-core outcome for matroid constraints. 

• Matching constraints 
• The paper shows that with the correct choice of l, the that local 

search procedures for the smooth Nash welfare objective yield to a (δ, 
k/δ)-core outcome for matroid constraints. For real number k greater 
than 0.



Influence of constraints Cont.
• Packing constraints 
• Optimizing any fixed smooth Nash welfare objective with packing 

constraints cannot guarantee a good approximation to the core



Conclusion 
• The paper is about solving the fair allocation of public goods. 

The main way this paper address this problem is by calculating 
the approximate core, which provides reasonable fairness in 
the allocation of public goods. 

• To calculate the approximate core, given that the current 
methods could not guarantee an integral outcome in the core, 
this paper presents algorithms with 3 types of constraints that 
could efficiently produce integral outcomes that are constant 
or near-constant approximations of the core.


