1 Matchings in Non-Bipartite Graphs

We discuss matching in general undirected graphs. Given a graph $G, \nu(G)$ denotes the size of the largest matching in G. We follow [1] (Chapter 24).

1.1 Tutte-Berge Formula for $\nu(G)$

Tutte (1947) proved the following basic result on perfect matchings.
Theorem 1 (Tutte) A graph $G=(V, E)$ has a prefect matching iff $G-U$ has at most $|U|$ odd components for each $U \subseteq V$.

Berge (1958) generalized Tutte's theorem to obtain a min-max formula for $\nu(G)$ which is now called the Tutte-Berge formula.

Theorem 2 (Tutte-Berge Formula) For any graph $G=(V, E)$,

$$
\nu(G)=\frac{|V|}{2}-\max _{U \subseteq V} \frac{o(G-U)-|U|}{2}
$$

where $o(G-U)$ is the number of components of $G-U$ with an odd number of vertices.
Proof: We have already seen the easy direction that for any $U, \nu(G) \leq \frac{|V|}{2}-\frac{o(G-U)-|U|}{2}$ by noticing that $o(G-U)-|U|$ is the number of nodes from the odd components in $G-U$ that must remain unmatched.

Therefore, it is sufficient to show that $\nu(G)=\frac{|V|}{2}-\max _{U \subseteq V} \frac{o(G-U)-|U|}{2}$. Any reference to left-hand side (LHS) or right-hand side (RHS) will be in reference to this inequality. Proof via induction on $|V|$. Base case of $|V|=0$ is trivial.

Case 1: There exists $v \in V$ such that v is in every maximum matching. Let $G^{\prime}=$ $\left(V^{\prime}, E^{\prime}\right)=G-v$, then $\nu\left(G^{\prime}\right)=\nu(G)-1$ and by induction, there is $U^{\prime} \subseteq V^{\prime}$ such that the RHS of the formula is equal to $\nu\left(G^{\prime}\right)=\nu(G)-1$. It is easy to verify that $U=U^{\prime} \cup\{v\}$ satisfies equality in the formula for G.

Case 2: For every $v \in G$, there is a maximum matching that misses it. By Claim 3 below, $\nu(G)=\frac{|V|-1}{2}$ and that there is an odd number of vertices in the entire graph. If we take $U=\emptyset$, then the theorem holds.

Claim 3 Let $G=(V, E)$ be a graph such that for each $v \in V$ there is a maximum matching in G that misses v. Then, $\nu(G)=\frac{|V|-1}{2}$. In particular, $|V|$ is odd.
Proof: G is necessarily connected. By way of contradiction, assume there exists two vertices $u \neq v$ and a maximum matching M that avoids them. Among all such choices, choose M, u, v such that $\operatorname{dist}(u, v)$ is minimized. If $\operatorname{dist}(u, v)=1$ then M can be grown by adding $u v$ to it. Therefore there
exists a vertex $t, u \neq t \neq v$, such that t is on a shortest path from u to v. Also, by minimality of distance between u and v we know that $t \in M$.

By the assumption, there is at least one maximum matching that misses t. We are going to choose a maximum matching N that maximizes $N \cap M$ while missing $t . N$ must cover u, or else N, u, t would have been a better choice above. Similarly, N covers v. Now $|M|=|N|$ and we have found one vertex $t \in M-N$ and two $u, v \in N-M$, so there must be another vertex $x \in M-N$ that is different from all of the above. Let $x y \in M . N$ is maximal, so $x y$ can't be added to it. Thus, we must have that $y \in N$ and that means $y \neq t$. Let $y z \in N$. Then we have that $z \in N-M$ because $x y \in M$ and $z \neq x$.

Figure 1: Green vertices are in M. Blue vertices are in N.

Consider the matching $N^{\prime}=N-y z+x y$. We have that $\left|N^{\prime}\right|=|N|$ and N^{\prime} avoids t and $\left|N^{\prime} \cap M\right|>|N \cap M|$. This is a contradiction.

2 Algorithm for Maximum Cardinality Matching

We now describe a polynomial time algorithm for finding a maximum cardinality matching in a graph, due to Edmonds. Faster algorithms are now known but the fundamental insight is easier to see in the original algorithm. Given a matching M in a graph G, we say that a node v is M-exposed if it is not covered by an edge of M.

Definition $4 A$ path P in G is M-alternating if every other edge is in M. It can have odd or even length. A path P is M-augmenting if it is M-alternating and both ends are M-exposed.

Lemma $5 M$ is a maximum matching in G if and only if there is no M-augmenting path.
Proof: If there is an M-augmenting path, then we could easily use it to grow M and it would not be a maximum matching.

In the other direction, assume that M is a matching that is not maximum by way of contradiction. Then there is a maximum matching N, and $|N|>|M|$. Let H be a subgraph of G induced by the edge set $M \Delta N=(M-N) \cup(N-M)$ (the symmetric difference). Note that the maximum
degree of a node in H is at most 2 since a node can be incident to at most one edge from $N-M$ and one edge from $M-N$. Therefore, H is a disjoint collection of paths and cycles. Furthermore, all paths are M-alternating (and N-alternating too). All cycles must be of even length, since they alternate edges from M and N too. At least one of the paths must have more N edges than M edges because $|N|>|M|$ and we deleted the same number of edges from N as M. That path is an M-augmenting path.

The above lemma suggests a greedy algorithm for finding a maximum matching in a graph G. Start with a (possibly empty) matching and iteratively augment it by finding an augmenting path, if one exists. Thus the heart of the matter is to find an efficient algorithm that given G and matching M, either finds an M-augmenting path or reports that there is none.

Bipartite Graphs: We quickly sketch why the problem of finding M-augmenting paths is relatively easy in bipartite graphs. Let $G=(V, E)$ with A, B forming the vertex bipartition. Let M be a matching in G. Let X be the M-exposed vertices in A and let Y be the M-exposed vertices in B. Obtain a directed graph $D=\left(V, E^{\prime}\right)$ by orienting the edges of G as follows: orient edges in M from B to A and orient edges in $E \backslash M$ from A to B. The following claim is easy to prove.
Claim 6 There is an M-augmenting path in G if and only if there is an $X-Y$ path in the directed graph D described above.

Non-Bipartite Graphs: In general graphs it is not straight forward to find an M-augmenting path. As we will see, odd cycles form a barrier and Edmonds discovered the idea of shrinking them in order to recursively find a path. The first observation is that one can efficiently find an alternating walk.

Definition $7 A$ walk in a graph $G=(V, E)$ is a finite sequence of vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{t}$ such that $v_{i} v_{i+1} \in E, 0 \leq i \leq t-1$. The length of the walk is t.

Note that edges and nodes can be repeated on a walk.
Definition $8 A$ walk $v_{0}, v_{1}, v_{2}, \ldots, v_{t}$ is M-alternating walk if for each $1 \leq i \leq t-1$, exactly one of $v_{i-1} v_{i}$ and $v_{i} v_{i+1}$ is in M.

Lemma 9 Given a graph $G=(V, E)$, a matching M, and M-exposed nodes X, there is an $O(|V|+$ $|E|$) time algorithm that either finds a shortest M-alternating $X-X$ walk of positive length or reports that there is no such walk.

Proof Sketch. Define a directed graph $D=(V, A)$ where $A=\{(u, v): \exists x \in V, u x \in E, x v \in M\}$. Then a $X-X M$-alternating walk corresponds to a $X-N(X)$ directed path in D where $N(X)$ is the set of neighbors of X in G (we can assume there is no edge between two nodes in X for otherwise that would be a shortest walk). Alternatively, we can create a bipartite graph with $D=\left(V \cup V^{\prime}, A\right)$ where V^{\prime} is a copy of V and $A=\left\{\left(u, v^{\prime}\right) \mid u v \in E \backslash M\right\} \cup\left\{\left(u^{\prime}, v\right) \mid u v \in M\right\}$ and find a shortest $X-X^{\prime}$ directed path in D where X^{\prime} is the copy of X in V^{\prime}.

What is the structure of an $X-X M$-alternating walk? Clearly, one possibility is that it is actually a path in which case it will be an M-augmenting path. However, there can be alternating walks that are not paths as shown by the figure below.

One notices that if an $X-X M$-alternating walk has an even cycle, one can remove it to obtain a shorter alternating walk. Thus, the main feature of an alternating walk when it is not a path is the presence of an odd cycle called a blossom by Edmonds.

Definition 10 An M-flower is an M-alternating walk $v_{0}, v_{1}, \ldots, v_{t}$ such that $v_{o} \in X, t$ is odd and $v_{t}=v_{i}$ for some even $i<t$. In other words, it consists of an even length $v_{0}, \ldots, v_{i} M$-alternating path (called the stem) attached to an odd cycle $v_{i}, v_{i+1}, \ldots, v_{t}=v_{i}$ called the M-blossom. The node v_{i} is the base of the stem and is M-exposed if $i=0$, otherwise it is M-covered.

Figure 2: A M-flower. The green edges are in the matching

Lemma $11 A$ shortest positive length $X-X \quad M$-alternating walk is either an M-augmenting path or contains an M-flower as a prefix.

Proof: Let $v_{0}, v_{1}, \ldots, v_{t}$ be a shortest $X-X M$-alternating walk of positive length. If the walk is a path then it is M-augmenting. Otherwise let i be the smallest index such that $v_{i}=v_{j}$ for some $j>i$ and choose j to be smallest index such that $v_{i}=v_{j}$. If v_{i}, \ldots, v_{j} is an even length cycle we can eliminated it from the walk and obtain a shorter alternating walk. Otherwise, $v_{0}, \ldots, v_{i}, \ldots, v_{j}$ is the desired M-flower with v_{i} as the base of the stem.

Given a M-flower and its blossom B (we think of B as both a set of vertices and an odd cycle), we obtain a graph G / B by shrinking B to a single vertex b and eliminating loops and parallel edges. It is useful to identify b with the base of the stem. We obtain a matching M / B in G / B which consists of eliminating the edges of M with both end points in B. We note that b is M / B-exposed iff b is M-exposed.

Theorem $12 M$ is a maximum matching in G if and only if M / B is a maximum matching in G / B.

Proof: The next two lemmas cover both directions.
To simplify the proof we do the following. Let $P=v_{0}, \ldots, v_{i}$ be the stem of the M-flower. Note that P is an even length M-alternating path and if $v_{0} \neq v_{i}$ then v_{0} is M-exposed and v_{i} is
M-covered. Consider the matching $M^{\prime}=M \Delta E(P)$, that is by switching the matching edges in P into non-matching edges and vice-versa. Note that $\left|M^{\prime}\right|=|M|$ and hence M is a maximum matching in G iff M^{\prime} is a maximum matching. Now, the blossom $B=v_{i}, \ldots, v_{t}=v_{i}$ is also a M^{\prime}-flower but with a degenerate stem and hence the base is M^{\prime}-exposed. For the proofs to follow we will assume that $M=M^{\prime}$ and therefore b is an exposed node in G / B. In particular we will assume that $B=v_{0}, v_{1}, \ldots, v_{t}=v_{0}$ with t odd.

Proposition 13 For each v_{i} in B there is an even-length M-alternating path Q_{i} from v_{0} to v_{i}.
Proof: If i is even then $v_{0}, v_{1}, \ldots, v_{i}$ is the desired path, else if i is odd, $v_{0}=v_{t}, v_{t-1}, \ldots, v_{i}$ is the desired path. That is, we walk along the odd cycle one direction or the other to get an even length path.

Lemma 14 If there is an M / B augmenting path P in G / B then there is an M-augmenting path P^{\prime} in G. Moreover, P^{\prime} can be found from P in $O(m)$ time.

Proof:

Case 1: P does not contain b. Set $P^{\prime}=P$.
Case 2: P contains $b . b$ is an exposed node, so it must be an endpoint of P. Without loss of generality, assume b is the first node in P. Then P starts with an edge $b u \notin M / B$ and the edge $b u$ corresponds to an edge $v_{i} u$ in G where $v_{i} \in B$. Obtain path P^{\prime} by concatenating the even length M-alternating path Q_{i} from v_{0} to v_{i} from Proposition 13 with the path P in which b is replaced by v_{i}; it is easy to verify that is an M-augmenting path in G.

Lemma 15 If P is an M-augmenting path in G, then there exists an M / B augmenting path in G / B.

Proof: Let $P=u_{0}, u_{1}, \ldots, u_{s}$ be an M-augmenting path in G. If $P \cap B=\emptyset$ then P is an M / B augmenting path in G / B and we are done. Assume $u_{0} \neq v_{0}$ - if this is not true, flip the path backwards. Let u_{j} be the first vertex in P that is in B. Then $u_{0}, u_{1}, \ldots, u_{j-1}, b$ is an M / B augmenting path in G / B. Two cases to verify when $u_{j}=v_{0}$ and when $u_{j}=v_{i}$ for $i \neq 0$, both are easy.

Remark 16 The proof of Lemma 14 is easy when b is not M-exposed. Lemma 15 is not straight forward if b is not M-exposed.

From the above lemmas we have the following.
Lemma 17 There is an $O(n m)$ time algorithm that given a graph G and a matching M, either finds an M-augmenting path or reports that there is none. Here $m=|E|$ and $n=|V|$.
Proof: The algorithm is as follows. Let X be the M-exposed nodes. It first computes a shortest $X-X \quad M$-alternating walk P in $O(m)$ time - see Lemma 9. If there is no such walk then clearly M is maximum and there is no M-augmenting path. If P is an M-augmenting path we are done. Otherwise there is an M-flower in P and a blossom B. The algorithm shrinks B and obtains G / B and M / B which can be done in $O(m)$ time. It then calls itself recursively to find an $M / B-$ augmenting path or find out that M / B is a maximum matching in G / B. In the latter case, M is a maximum matching in G. In the former case the M / B augmenting path can be extended to an
M-augmenting path in $O(m)$ time as shown in Lemma 14. Since G / B has at least two nodes less than G, it follows that his recursive algorithm takes at most $O(n m)$ time.

By iteratively using the augmenting algorithm from the above lemma at most $n / 2$ times we obtain the following result.

Theorem 18 There is an $O\left(n^{2} m\right)$ time algorithm to find a maximum cardinality matching in a graph with n nodes and m edges.

The fastest known algorithm for this problem has a running time of $O(m \sqrt{n})$ and is due to Micali and Vazirani with an involved formal proof appearing in [3; an exposition of this algorithm can be found in [2].

References

[1] A. Schrijver. Combinatorial Optimization. Springer-Verlag Berlin Heidelberg, 2003
[2] P. Peterson and M. Loui. The General Maximum Matching Algorithm of Micali and Vazirani. Algorithmica, 3:511-533, 1998.
[3] V. Vazirani. A Theory of Alternating Paths and Blossoms for Proving Correctness of the $O(|E| \sqrt{|V|})$ General Graph Maximum Matching Algorithm. Combinatorica, 14(1):71-109, 1994.

