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Material taken mostly from [1] (Chapter 19).

1 Integer Decomposition Property

A polyhedron P has the integer decomposition property if ∀ integers k ≥ 1 and x ∈ P , kx is integral
implies kx = x1 + x2 + . . .+ xk for integral vectors x1, . . . , xk in P . Baum and Trotter showed the
following:

Theorem 1 (Baum and Trotter) A matrix A is TUM iff P = {x | x ≥ 0, Ax ≤ b} has the
integer decomposition property for all integral verctors b.

Proof: We show one direction, the one useful for applications. Suppose A is TUM, consider
P = {x | x ≥ 0, Ax ≤ b}. Let y = kx∗ be an integral vector where x∗ ∈ P . We prove by induction
on k that y = x1 + x2 + . . . .xk for integral vectors x1, x2, . . . , xk in P .

Base case for k = 1 is trivial.
For k ≥ 2, consider the polyhedron P ′ = {x | 0 ≤ x ≤ y;Ay − kb + b ≤ Ax ≤ b}. P ′ is an

integral polyhedron since A is TUM and Ay − kb + b and b are integral. The vector x∗ ∈ P ′ and
hence P ′ is not empty. Hence there is an integral vector x1 ∈ P ′. Moreover y′ = y − x1 is integral
and y′ ≥ 0, Ay′ ≤ (k − 1)b.

By induction y′ = x2 + . . .+xk−1 where x2, . . . , xk−1 are integral vectors in P . y = x1 + . . .+xk
is the desired combination for y. 2

Remark 2 A polyhedron P may have the integer decomposition property even if the constraint
matrix A is not TUM. The point about TUM matrices is that the property holds for all integral
right hand side vectors b.

2 Applications of TUM Matrices

We saw that network matrices are TUM and that some matrices arising from graphs are network
matrices. TUM matrices give rise to integral polyhedra, and in particular, simultaneously to the
primal and dual in the following when A is TUM and c, b are integral vectors.

max{cx | x ≥ 0, Ax ≤ b} = min{yb | y ≥ 0, yA ≥ c}

We can derive some min-max results and algorithms as a consequence.



2.1 Bipartite Graph Matchings

Let G = (V,E) be a bipartite graph with V = V1 ⊕ V2 as the bipartition. We can write an integer
program for the maximum cardinality matching problem as

max
∑
e∈E

x(e)

x(δ(u)) ≤ 1 ∀u ∈ V
x(e) ≥ 0 ∀e ∈ E
x ∈ Z

We observe that this is a ILP problem max{1·x |Mx ≤ 1, x ≥ 0, x ∈ Z} where M is the edge-vertex
incidence matrix of G. Since M is TUM, we can drop the integrality constraint and solve the linear
program max{1 · x |Mx ≤ 1, x ≥ 0} since {x |Mx ≤ 1, x ≥ 0} is an integral polyhedron. The dual
of the above LP is

min
∑
u∈V

y(u)

y(u) + y(v) ≥ 1 uv ∈ E
y ≥ 0

in other words min{y · 1|yM ≥ 1, y ≥ 0} which is is also an integral polyhedron since MT is TUM.
We note that this is the min-cardinality vertex cover problem

Note that the primal LP is a polytope and hence has a finite optimum solution. By duality, and
integrality of the polyhedra, we get that both primal and dual have integral optimum solutions x∗

and y∗ such that 1 · x∗ = y∗ · 1. We get as an immediate corollary König’s Theorem.

Theorem 3 In a bipartite graph the cardinality of a maximum matching is equal to the cardinality
of a minimum vertex cover.

Also, by poly-time solvability of linear programming, there is a polynomial time algorithm for
maximum matching and minimum vertex cover in bipartite graphs, and also their weighted versions.
Note that we have much more efficient combinatorial algorithms for these problems. We also obtain
that {x |Mx ≤ 1, x ≥ 0} is the convex hull of the characteristic vectors of the matchings in G and
that {x |Mx = 1, x ≥ 0} is the convex hull of the perfect matchings of G.

One easy consequence is the following theorem

Theorem 4 (Birkhoff - Von Neumann) Let A be a n × n doubly stochastic matrix. Then A
can be written as a convex combination of permutation matrices.

A doubly stochastic matrix is a square non-negative matrix in which each row and column sum
is 1. A permutation matrix is a square {0, 1} matrix that has a single 1 in each row and column.
Each permulation matrix corresponds to a permutation σ in Sn, the set of all permutations on an
n-element set.

Exercise 5 Prove the above theorem using the perfect matching polytope description for bipartite
graphs. How many permutations matrices do you need in the convex combination?



Note that max{wx | Mx ≤ 1, x ≥ 0} = min{y · 1 | yM ≥ w, y ≥ 0} has integer primal and
dual solutions x∗ and y∗ · 1 if w is integral. For the primal x∗ corresponds to a maximum w-weight
matching. In the dual, via complementary slackness, we have

y∗(u) + y∗(v) = w∗(v)

for all x∗(uv) > 0 Interpreting y∗(u) as a weight on u, one obtains a generalization of König’s
theorem, known as the Egervary theorem.

Another theorem on bipartite graphs is the Hall’s marriage theorem.

Theorem 6 (Hall) Let G = (V,E) be a bipartite graph with X,Y as the vertex sets of the bipar-
tition. Then there is a matching that saturates X iff |N(S)| ≥ |S|∀S ⊆ X where N(S) is the set of
neighbors of S.

Exercise 7 Derive Hall’s theorem from König’s Theorem.

A generalization of the above also holds.

Theorem 8 Let G = (X ∪ Y,E) be a bipartite graph. Let R ⊆ U . Then there is a matching
that covers R iff there exists a matching M that covers R ∩X and a matching that covers R ∩ Y .
Therefore, a matching covers R iff |N(S)| ≥ |S|∀S ⊆ R ∩X and ∀S ⊆ R ∩ Y .

Exercise 9 Prove above theorem.

b-matchings: b-matchings generalize matchings. Given an integral vector b : V → Z+, a b-
matching is a set of edges such that the number of edges incident to a vertex v is at most b(v).
From the fact that the matrix M is TUM, one can obtain various properties of b-matchings by
observing that the polyhedron

Mx ≤ b

x ≥ 0

is integral for integral b.

2.2 Single Commodity Flows and Cuts

We can derive various useful and known facts about single commodity flows and cuts using the fact
that the directed graph arc-vertex incidence matrix is TUM.

Consider the s-t maximum-flow problem in a directed graph D = (V,A) with capacities c : A→
R+. We can express the maximum flow problem as an LP with variables x(a) for flow on arc a.

max
∑

a∈δ+(s)

x(a)−
∑

a∈δ−(s)

x(a)

∑
a∈δ+(v)

x(a)−
∑

a∈δ−(v)

x(a) = 0 ∀v ∈ V − {s, t}

x(a) ≤ c(a) ∀a ∈ A
x(a) ≥ 0 ∀a ∈ A



Note that the polyhedron defined by the above is of the form {x | M ′x = 0, 0 ≤ x ≤ c} where
M ′ is the arc-vertex incidence matrix of D with the columns corresponding to s, t removed. M ′

is a submatrix of M , the arc-vertex incidence matrix of D which is TUM, and hence M ′ is also
TUM. Therefore, the polyhedron above is integral for integral c. One immediate corollary is that
for integral capacities, there is a maximum flow that is integral. We now derive the maxflow-mincut
theorem as a consequence of the total unimodularity of M .

The dual to the maximum-flow LP above has two sets of variables. y(a), a ∈ A for the capacity
constraints and z(v), v ∈ V −{s, t} for the flow conservation constraints. We let w(a) be the weight
vector of the primal. Note that

w(a) =


1 if a = (s, v) for some v ∈ V
−1 if a = (v, s) for some v ∈ V
0 otherwise

For simplicity assume that there is no arc (s, t) or (t, s). Then the dual is:

min
∑
a∈A

c(a)y(a)

z(u)− z(v) + y(u, v) ≥ 0 (u, v) ∈ A {u, v} ∩ {s, t} = ∅
z(v) + y(s, v) ≥ 1 ∀(s, v) ∈ A
z(v) + y(s, v) ≥ −1 ∀(v, s) ∈ A
z(v) + y(v, t) ≥ 0 ∀(v, t) ∈ A
−z(v) + y(t, v) ≥ 0 ∀(t, v) ∈ A

y ≥ 0

Note that z are unconstrained variables. In matrix form, the primal is max{wx |M ′x = 0, 0 ≤
x ≤ c} and the dual is min{yc | y ≥ 0;∃z : y + zM ′ ≥ wT }. Since w is integral and M ′ is TUM,
dual is an integral polyhedron. Primal is bounded polyhedron and hence primal and dual have
optimal solution x∗ and (y∗, z∗) such that wx∗ = y∗c and y∗, z∗ is integral.

We can extend z to have variables z(s) and z(t) with z(s) = −1 and z(t) = 0. Then the dual has
a cleaner form, max{yc | y ≥ 0,∃z : y+ zM ≥ 0}. Note that M here is the full arc-vertex incidence
matrix of D. Thus we have x∗ and integral (y∗, z∗) such that wx∗ = y∗c and y∗ + z∗M ≥ 0.

Let U = {v ∈ V |z∗(v) < 0}. Note that s ∈ U and t /∈ U and hence δ+(U) is a s-t cut.

Claim 10 c(δ+(U)) ≤ y∗c =
∑
a∈A

y∗(a)c(a)

Proof: Take any arc (u, v) ∈ δ+(U). We have z∗(u) − z∗(v) + y∗(u, v) ≥ 0 for each (u, v). Since
u ∈ U and v /∈ U , z∗(u) < 0 and z∗(v) ≥ 0. Since z∗ is integral, we have

y∗(u, v) ≥ 1

=⇒ c(δ+(U)) ≤
∑

a∈δ+(U)

c(a)y∗(a)

≤
∑
a∈A

c(a)y∗(a) since y∗ ≥ 0
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Therefore, U is a s-t cut of capacity at most y∗c = wx∗ but wx∗ is the value of a maximum
flow. Since the capacity of any cut upper bounds the maximum flow, we have that there exists a
cut of capacity equal to that of the maximum flow. We therefore, get the following theorem,

Theorem 11 In any directed graph G = (V,A) with non-negative arc capacities, c : E → Q+, the
s-t maximum-flow value is equal to the s-t minimum cut capacity. Moreover, if c : E → z+, then
there is an integral maximum flow.

Interpretation of the dual values: A natural interpretation of the dual is the following. The
dual values, y(a) indicate whether a is cut or not. The value z(v) is the shortest path distance
from s to v with y(a) values as the length on the arcs. We want to separate s from t. So, we have
(implicitly) z(s) = −1 and z(t) = 0. The constraints z(u) − z(v) + y(u, v) ≥ 0 enforce that the z
values are indeed shortest path distances. The objective function

∑
a∈A

c(a)y(a) is the capacity of the

cut subject to separating s from t.

Circulations and lower and upper bounds on arcs: More general applications of flows are
obtained by considering both lower and upper bounds on the flow on arcs. In these settings,
circulations are more convenient and natural.

Definition 12 For a directed graph D = (V,A), a circulation is a function f : A→ R+ such that∑
a∈δ−(v)

f(a) =
∑

a∈δ+(v)

f(a)∀v ∈ V

Given non-negative lower and upper bounds on the arcs, l : A → R+ and u : A → R+, we are
interested in circulations that satisfy the bounds on the arcs. In other words, the feasibility of the
following:

l(a) ≤ x(a) ≤ u(a)
x is a circulation

The above polyhedron is same as {x | Mx = 0, l ≤ x ≤ u} where M is the arc-vertex incidence
graph of D, which is TUM. Therefore, if l, u are integral then the polyhedron is integral. Checking
if there is a feasible circulation in a graph with given l and u is at least as hard as solving the
maximum flow problem.

Exercise 13 Given D, s, t ∈ V and a flow value F , show that checking if there is an s− t flow of
value F can be efficently reduced to checking if a given directed graph has a circulation respecting
lower and upper bounds.

The converse is also true however; one can reduce circulation problems to regular maximum-flow
problems, though it takes a bit of work.

Min-cost circulation is the problem: min{cx | l ≤ x ≤ u,Mx = 0}. We therefore obtain that

Theorem 14 The min-cost circulation problem with lower and upper bounds can be solved in
(strongly) polynomial time. Moreover, if l, u are integral then there exists an integral optimum
solution.



The analogue of max flow-min cut theorem in the circulation setting is Hoffman’s circulation
theorem.

Theorem 15 Given D = (V,A) and l : A → R+ and u : A → R+, there is a feasible circulation
x : A→ R+ iff

1. l(a) ≤ c(a) ∀a ∈ A and

2. ∀U ⊆ V, l(δ−(U)) ≤ c(δ+(U)).

Moreover, if l, u are integral then there is an integral circulation.

Exercise 16 Prove Hoffman’s theorem using TUM property of M and duality.

b-Transshipments: One obtains slightly more general objects called transshipments as follows:

Definition 17 Let D = (V,E) be a directed graph and b : A→ R. A b-transshipment is a function
f : A → R+ such that ∀u ∈ V , f(δ−(u)) − f(δ+(u)) = b(u) i.e, the excess inflow at u is equal to
b(u).

We think of nodes u with b(u) < 0 as supply nodes and b(u) > 0 as demand nodes. Note that
b = 0 captures circulations. Once can generalize Hoffman’s circulation theorem.

Theorem 18 Given D = (V,A), b : V → R+ and l : A → R+and u : A → R+,there exists a
b-transshipment respecting l, u iff

1. l(a) ≤ u(a) ∀a ∈ A and

2.
∑
v∈V

b(v) = 0 and

3. ∀S ⊆ V , u(δ+(S)) ≥ l(δ−(S)) + b(S).

Moreover, if b, l, u are integral, there is an integral b-transshipment.

Exercise 19 Derive the above theorem from Hoffman’s circulation theorem.

2.3 Interval graphs

A graph G = (V,E) on n nodes is an interval graph if there exist a collection I of n closed intervals
on the real line and a bijection f : V → I such that uv ∈ E iff f(u) and f(v) intersect. Given an
interval graph, an interesting problem is to find a maximum weight independent set in G where
w : A→ R+ is a weight function. This is same as asking for the maximum weight non-overlapping
set of intervals in a collection of intervals.

We can write an LP for it. Let I = {I1, . . . , In}

max
n∑
i=1

wixi∑
Ii:p∈Ii

xi ≤ 1 ∀p in R

xi ≥ 0 1 ≤ i ≤ n



Note that the constraints can be written only for a finite set of points which correspond to the
end points of the intervals. These are the natural “clique” constraints: each maximal clique in G
corresponds to a point p and all the intervals containing p. and clearly an independent set cannot
pick more than one node from a clique.

The LP above is max{wx | x ≥ 0,Mx ≤ 1} where M is a consecutive ones matrix, and hence
TUM. Therefore, the polyhedron is integral. We therefore have a polynomial time algorithm for
the max-weight independent set problem in interval graphs. This problem can be easily solved
efficienctly via dynamic programming. However, we observe that we can also solve max{wx|x ≥
0,Mx ≤ b}for any integer b and this is not easy to see via other methods.

To illustrate the use of integer decomposition properties of polyhedra, we derive a simple and
well known fact.

Proposition 20 Suppose we have a collection of intervals I such that ∀p ∈ R the maximum
number of intervals containing p is at most k. Then I can be partitioned into I1, I2, . . . , Ik such
that each Ik is a collection of non-overlapping intervals. In other words, if G is an interval graph
then ω(G) = χ(G) where ω(G) is the clique-number of G and χ(G) is the chromatic number of G.

One can prove the above easily via a greedy algorithm. We can also derive this by considering
the independent set polytope {x | x ≥ 0,Mx ≤ 1}. We note that x∗ = 1

k .1 is feasible for this
polytope if no point p is contained in more than k intervals. Since P has the integer decomposition
property, y = kx∗ = 1 can be written as x1 + . . .+ xk where xi is integral ∀1 ≤ i ≤ k and xi ∈ P .
This gives the desired decomposition. The advantage of the polyhedral approach that one obtains
a more general theorem by using an arbitrary integral b in the polytope {x | x ≥ 0,Mx ≤ b} and
this has applications; see for example [2].
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