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1 More Background on Polyhedra

This material is mostly from [3].

1.1 Implicit Equalities and Redundant Constraints

Throughout this lecture we will use affhull to denote the affine hull, linspace to be the linear
space, charcone to denote the characteristic cone and convexhull to be the convex hull. Recall
that P = {x | Ax ≤ b} is a polyhedron in Rn where A is a m× n matrix and b is a m× 1 matrix.
An inequality aix ≤ bi in Ax ≤ b is an implicit equality if aix = bi ∀x ∈ P . Let I ⊆ {1, 2, . . . ,m}
be the index set of all implicit equalities in Ax ≤ b. Then we can partition A into A=x ≤ b= and
A+x ≤ b+. Here A= consists of the rows of A with indices in I and A+ are the remaining rows of
A. Therefore, P = {x | A=x = b=, A+x ≤ b+}. In other words, P lies in an affine subspace defined
by A=x = b=.

Exercise 1 Prove that there is a point x′ ∈ P such that A=x′ = b= and A+x′ < b+.

Definition 1 The dimension, dim(P ), of a polyhedron P is the maximum number of affinely
independent points in P minus 1.

Notice that by definition of dimension, if P ⊆ Rn then dim(P ) ≤ n, if P = ∅ then dim(P ) = −1,
and dim(P ) = 0 if and only if P consists of a single point. If dim(P ) = n then we say that P is
full-dimensional.

Exercise 2 Show that dim(P ) = n− rank(A=).

The previous exercise implies that P is full-dimensional if and only if there are no implicit
inequalities in Ax ≤ b.

Definition 2 affhull(P ) = {x | A=x = b=}

Definition 3 linspace(P ) = {x | Ax = 0} = charcone(P ) ∩ −charcone(P ). In other words,
linspace(P ) is the set of all directions c such that there is a line parallel to c fully contained in P .

Definition 4 A polyhedron P is pointed if and only if linspace(P ) = {0}, that is linspace(P )
has dimension 0.

A constraint row in Ax ≤ b is redundant if removing it does not change the polyhedron. The
system Ax ≤ b is irredundant if no constraint is redundant.



1.2 Faces of Polyhedra

Definition 5 An inequality αx ≤ β, where α 6= 0, is a valid inequality for a polyhedron P =
{x | Ax ≤ b} if αx ≤ β ∀x ∈ P . The inequality is a supporting hyperplane if it is valid and has a
non-empty intersection with P

Definition 6 A face of a polyhedron P is the intersection of P with {x | αx = β} where αx ≤ β
is a valid inequality for P .

We are interested in non-empty faces. Notice that a face of a polyhedron is also a polyhedron.
A face of P is an extreme point or a vertex if it has dimension 0. It is a facet if the dimension of
the face is dim(P )− 1. The face is an edge if it has dimension 1.

Another way to define a face is to say that F is a face of P if F = {x ∈ P | A′x = b′} where
A′x ≤ b′ is a subset of the inequalities of Ax ≤ b. In other words, F = {x ∈ P | aix = bi, i ∈ I}
where I ⊆ {1, 2, . . . ,m} is a subset of the rows of A.

Now we will show that these two definitions are equivalent.

Theorem 7 Let A ∈ Rm×n, b ∈ Rn. Let P = {x | Ax ≤ b} be a polyhedron. Let F be a face defined
by a valid inequality αx ≤ β. Then ∃I ⊆ {1.2. . . . ,m} such that F = {x ∈ P | aix = bi, i ∈ I}.
Proof: Let F = {x | x ∈ P, αx = β} where αx ≤ β is a supporting hyperplane. Then, the following
claim is easy to see.

Claim 8 F is the set of all optimal solutions to the LP

maxαx
Ax ≤ b.

The above LP has an optimal value β. This implies that the dual LP is feasible and has an
optimum solution y∗. Let I = {i | y∗i > 0}. Let X be the set of all optimal solutions to the primal.
For any x′ ∈ X, by complimentary slackness for x′ and y∗, we have that y∗i > 0 implies aix′ = bi.
Therefore X is a subset of the solutions to the following system of inequalities:

aix = bi i ∈ I
aix ≤ bi i /∈ I

Again, by complementary slackness any x′ that satisfies the above is optimal (via y∗) for the
primal LP and. Therefore F = X = {x ∈ P | aixi = bi, i ∈ I}. 2

Now we consider the converse.

Theorem 9 Let P = {x | Ax ≤ b} where A ∈ Rm×n and b ∈ Rm. Let I ⊆ {1, . . . ,m} and
F = {x ∈ P | aix = bi, i ∈ I}. If F is non-empty, then there is a valid inequality αx ≤ β such that
F = P ∩ {x | αx = β}.
Proof:[Idea] Let α =

∑
i∈I ai be a row vector and β = max{αx | Ax ≤ b}. We claim that

F = {x | x ∈ P, αx = β} which implies that F is the intersection of P with the supporting
hyperplane αx ≤ β. 2



Corollary 10

1. The number of faces of P = {x | Ax ≤ b} where A is a m× n matrix is at most 2m.

2. Each face is a polyhedron.

3. If F is a face of P and F ′ ⊆ F then F ′ is a face of P if and only if F ′ is a face of F .

4. The intersecton of two faces is either a face or is empty.

1.3 Facets

Definition 11 A facet of P is an inclusion-wise maximal face distinct from P . Equivalently, a
face F of P is a facet if and only if dim(F ) = dim(P )− 1.

We have the following theorem about facets.

Theorem 12 Let P = {x | Ax ≤ b} = {x | A=x = b=, A+x ≤ b+}. If no inequality of A+x ≤ b+

is redundant in Ax ≤ b, then there is a one to one correspondence between the facets of P and the
inequalities in A+x ≤ b+. That is, F is a facet of P if and only if F = {x ∈ P | aix = bi} for some
inequality aix ≤ bi from A+x ≤ b+.

Proof: Let F be a facet of P . Then F = {x ∈ P | A′x = b′} where A′x ≤ b′ is a subsystem of
A+x ≤ b+. Take some inequality αx ≤ β in A′x ≤ b′. Then F ′ = {x ∈ P | αx = β} is a face of P
and F ⊆ F ′. Moreover, F ′ 6= P since no inequality in A+ ≤ b+ is an implicit equality.

Let F = {x ∈ P | αx = β} for some inequality αx ≤ β from A+ ≤ b+. We claim that
dim(F ) = dim(P )− 1 which implies that F is a facet. To prove the claim it is sufficient to show
that there is a point x0 ∈ P such that A=x0 = b=, αx0 = β and A′x0 < b′ where A′ ≤ b′ is the
inequalities in A+x ≤ b+ with αx ≤ β omitted. From Exercise 1, there is a point x1 such that
αx1 = β and A=x1 = b= and A+x1 < b+. Moreover since αx ≤ β is irredundat in Ax ≤ b, there is
a point x2 such that A=x2 = b= and A′x2 ≤ b′ and αx2 > β. A convex combination of x1 and x2

implies the existence of the desired x0. 2

Corollary 13 Each face of P is the intersection of some of the facets of P .

Corollary 14 A polyhedrom P has no facet if and only if P is an affine subspace.

Exercise 3 Prove the above two corollaries using Theorem 12.

1.4 Minimal Faces and Vertices

A face is inclusion-wise minimal if it does not contain any other face. From Corollary 14 and the
fact that a face of a polyhedron is a polyhedron the next proposition follows.

Proposition 15 A face F of P is minimal if and only if F is an affine subspace.

Theorem 16 A set F is minimal face of P if and only if ∅ 6= F , F ⊆ P and F = {x | A′x = b′}
for some subsystem A′x ≤ b′ of Ax ≤ b.



Proof: Suppose F is a face and F = {x | A′x = b′} then by Proposition 15, it is minimal. For the
converse direction suppose F is a minimal face of P . Since F is a face, F = {x | A′′x ≤ b′′, A′x = b′}
where A′′x ≤ b′′ and A′x ≤ b′ are two subsystems of Ax ≤ b. We can assume that A′′x ≤ b′′ is
as small as possible and therefore, irredundant. From Theorem 12, if A′′x ≤ b′′ has any inequality
then F has a facet which implies that F is not minimal. Therefore, F = {x | A′x = b′}. 2

Exercise 4 Prove that all minimal faces of a polyhedron {x | Ax ≤ b} are of the form {x | A′x = b′}
for some subsystem A′x ≤ b′ of Ax ≤ b where rank(A′) = rank(A). Conclude that all minimal
faces are translates of linspace(P ) and have the same dimension.

A vertex or an extreme point of P is a (minimal) face of dimension 0. That is, a single point.
A polyhedron is pointed if and only if it has a vertex. Note that since all minimal faces have the
same dimension, if P has a vertex than all minimal faces are vertices. Since a minimal face F of
P is defined by A′x = b′ for some subsystem A′x ≤ b′ of Ax ≤ b, if a vertex of P is the unique
solution to A′x = b′ then rank(A′) = n. We can then assume that A′ has n rows. Vertices are also
called basic feasible solutions.

Corollary 17 A polyhedron {x | Ax ≤ b} has a vertex only if A has rank n. The polyhedron
{x | Ax ≤ b} is pointed if it is not empty.

1.5 Decomposition of Polyhedra

Recall that we had earlier stated that,

Theorem 18 Any polyhedron P can be written as Q+C where Q is a convex hull of a finites set
of vectors and C = {x | Ax ≤ 0} is the charcone of P .

We can give more details of the decomposition now. Given P , let F1, F2, . . . , Fh be its minimal
faces. Choose xi ∈ Fi arbitrarily. Then P = convexhull(x1, x2, . . . , xh) + C. In particular, if P is
pointed then x1, x2, . . . , xh are vertices of P and hence P = convexhull(vertices(P )) + C.

We will prove the above for polytopes.

Theorem 19 A polytope (bounded polyhedron) is the convex hull of its vertices

x∗
x1

x2

x3

x4

αx = β

Proof: First observe that a bounded polyhedron is
necessarily pointed. Let X = {x1, x2, . . . , xh} be the
vertices of P . Clearly convexhull(X) ⊆ P . We prove
the converse. Suppose x∗ ∈ P does no belong to
convexhull(X).

Claim 20 There exists a hyperplane αx = β such that
αxi < β ∀xi ∈ X and αx∗ ≥ β.

Proof:[Claim] One can prove this by using Farkas
lemma (see [2] for example) or appeal to the general
theorem that if two convex sets do not intersect then
there is a separating hyperplane for them; in particu-
lar if one of the sets is bounded then there is a strict



separating hyperplane (see [1], Section 2.4). A sketch of this for the restricted case we have is as
follows. Let y ∈ convexhull(X) minimize the distance from x∗ to convexhull(X). The claim is
that a hyperplane that is normal to the line segment joining x∗ and y and passing through x∗ is
the desired hyperplane. Otherwise convexhull(X) intersects this hyperplane, and let y′ be a point
in the intersection. Since convexhull(X) is convex, the line segment joining y′ and y is contained
in convexhull(X). Now consider the right angled triangle formed by y, x∗, y′. From elementary
geometry, it follows that there is a point closer to x∗ than y on the line segment joining y and y′,
contradicting the choice of y. 2

Now consider max{αx | x ∈ P}. The set of optimal solutions to this LP is a face of F . By
Claim 20, X∩F = ∅. Since F is a face of P , it has a vertex of P since P is pointed. This contradicts
that X is the set of all vertices of P . 2

One consequence of the decomposition theorem is the following.

Theorem 21 If P = {x | Ax ≤ b} is pointed then for any c 6= 0 the LP

max cx

Ax ≤ b
is either unbounded, or there is a vertex x∗ such that x∗ is an optimal solution.

The proof of the previous theorem is left as an exercise.

2 Complexity of Linear Programming

Recall that LP is an optimization problem of the following form.

maxαx
Ax ≤ b

As a computational problem we assume that the inputs c, A, b are rational. Thus the input
consists of n + m × n + n rational numbers. Given an instance I we use size(I) to denote the
number of bits in the binary representation of I. We use it loosely for other quantities such as
numbers, matrices, etc. We have that size(I) for an LP instance is,

size(c) + size(A) + size(b) ≤ (m× n+ 2n)size(L)

where L is the largest number in c, A, b.

Lemma 22 Given a n× n rational matrix size(det(A)) = poly(size(A)).

Proof: For simplicity assume that A has integer entries, otherwise one can multiply each entry by
the lcm of the denominators of the rational entries. We have

det(A) =
∑
σ∈Sn

sign(σ)
n∏
i=1

Ai,σ(i)



where Sn is the set of all permutations on {1, . . . , n}. Hence

| det(A)| ≤
∑
σ∈Sn

n∏
i=1

|Ai,σ(i)|

≤ n!× Ln

where L = max |Ai,j |; here |x| for a number x is its absolute value. Therefore the number of bits
required to represent det(A) is O(n logL+ n log n) which is polynomial in n and logL, and hence
poly(size(A)). 2

Corollary 23 If A has an inverse, then size(A−1) = poly(size(A)).

Corollary 24 If Ax = b has a feasible solution then there exists a solution x∗ such that size(x∗) =
poly(size(A, b)).

Proof: Suppose Ax = b has a feasible solution. By basic linear algbegra, there is a square submatrix
U of A with full rank and a sub-vector b′ such that U−1b′ padded by 0’s for the other variables is
a feasible solution for the original system. We then apply the previous corollary to U and b′. 2

Gaussian elimination can be adapted using the above to show the following — see [3].

Theorem 25 There is a polynomial time algorith, that given a linear system Ax = b, either
correctly outputs that it has no feasible solution or outputs a feasible solution. Moreover, the
algorithm determines whether A has a unique feasible solution.

Now we consider the case when Ax ≤ b has a feasible solution.

Theorem 26 If a linear system Ax ≤ b has a feasible solution then there exists a solution x∗ such
that size(x∗) = poly(size(A, b)).

Proof: Consider a minimal face F of P = {x | Ax ≤ b}. We have seen that F = {x | A′x =
b′} for some subsystem A′x ≤ b′ of Ax ≤ b. By Theorem 25, A′x = b′ has a solution of size
poly(size(A′, b′)). 2

Corollary 27 The problem of deciding whether {x | Ax ≤ b} is non-empty is in NP.

Corollary 28 The problem of deciding whether {x | Ax ≤ b} is empty is in NP. Equivalently the
problem of deciding non-emptiness is in coNP.

Proof: By Farkas’ lemma, if Ax ≤ b is empty only if ∃y ≥ 0 such that yA = 0 and yb = −1.
Therefore there is a certificate y the problem of deciding whether {x | Ax ≤ b} is empty. Further,
by Lemma 22 this certificate has polynomial size. 2

Thus we have seen that deciding whether Ax ≤ b is non-empty is in NP ∩ coNP.
Now consider the optimization problem.

maxαx
Ax ≤ b

A natural decision problem associated with the above problem is to decide if the optimum value
is at least some given rational number α.



Exercise 5 Prove that the above decision problem is in NP ∩ coNP.

Another useful fact is the following.

Theorem 29 If the optimum value of the LP max cx such that Ax ≤ b is finite then the optimum
value has size polynomial in the input size.

Proof:[sketch] If the optimum value is finite then by strong duality then it is achieved by a solution
(x′, y′) that satisfies the following system:

cx = yb

Ax ≤ b
yA = c

y ≥ 0.

From Theorem 26, there is a solution (x∗, y∗) to the above system with size(x∗, y∗) polynomial in
size(A, b, c). Hence the optimum value which is cx∗ has size polynomial in size(A, b, c). 2

Exercise 6 Show that the decision problem of deciding whether max cx where Ax ≤ b is unbounded
is in NP ∩ coNP.

The optimization problem for

maxαx
Ax ≤ b

requires an algorithm that correctly outputs one of the following

1. Ax ≤ b is infeasible

2. the optimal value is unbounded

3. a solution x∗ such that cx∗ is the optimum value

A related search problem is given Ax ≤ b either output that Ax ≤ b is infeasible or a solution
x∗ such that Ax∗ ≤ b.

Exercise 7 Prove that the above two search problems are polynomial time equivalent.

3 Polynomial-time Algorithms for LP

Khachiyan’s ellipsoid algorithm in 1978 was the first polynomial-time algorithm for LP. Although
an impractical algorithm, it had (and contiues to have) a major theoretical impact. The algorithm
shows that one does not need the full system Ax ≤ b in advance. If one examines carefully the size
of a proof of feasibility of a system of inequalities Ax ≤ b, one notices that there is a solution x∗

such that x∗ is a solution to A′x ≤ b′ for some subsystem A′x ≤ b′ where rank of A is at most n.
This implies that A′ can be chosen to have at most n rows. Therefore, if the system has a solution



then there is one whose size is polynomial in n and the size of the largest entry in A. We may
discuss more details of the ellipsoid method in a later lecture.

Subsequently, Karmarkar in 1984 gave another polynomial-time algorithm using an interior
point method. This is much more useful in practice, especially for certain large linear programs,
and can beat the simplex method which is the dominant method in practice although it is not a
polynomial time algorithm in the worst case.
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