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1 Okamura-Seymour Theorem

Theorem 1 Let G = (V,E) be a plane graph and let H = (T,R) be a demand graph where T is
the set of vertices of a single face of G. Then if G satisfies the cut condition for H and G+H is
eulerian, there is an integral multiflow for H in G.

The proof is via induction on 2|E| − |R|. Note that if G satisfies the cut condition for H, then
|R| ≤ |E| (why?).

There are several “standard” induction steps and observations that are used in this and other
proofs and we go over them one by one. For this purpose we assume G, H satisfy the conditions
of the theorem and is a counter example with 2|E(G)| − |R| minimal[1].

Claim 2 No demand edge r is parallel to a supply edge e.

Proof: If r is parallel to e then G−e, H−r satisfy the conditions of the theorem and by induction
H − r has an integral multiflow in G− e. We can route r via e. Thus H has an integral multiflow
in G. 2

Definition 3 A set S ⊂ V is said to be tight if |δG(S)| = |δH(S)|.

Claim 4 For every demand edge r ∈ R there is a tight cut S s.t. r ∈ δH(S).

Proof: If r is not in any tight set, then adding two copies of r to H maintains cut condition and
the Eulerian condition. By induction (note that the induction is on 2|E| − |R|) the new instance is
routable. 2

Claim 5 G is 2-node connected.

Proof: Suppose not and let v be a cut vertex of G. Let G1, G2, ..., Gk be the graphs obtained by
combining v with the components of G− v.

Suppose there is a demand edge r = (s, t) s.t. s 6= v, t 6= v and s ∈ Gi and t ∈ Gj , i 6= j. Then we
can replace (s, t) by two edges (s, v) and (v, t). The claim is that this new instance satisfies the cut
condition - we leave the formal proof as an exercise. Clearly Euler condition is maintained. The
new instance is routable by induction which implies that the original instance is also routable.



If no such demand edge exits then all demand edges have both end points in Gi for some i.
Then let Hi be the demand graph induced on Gi. We can verify that each Gi, Hi satisfy the cut
condition and the Euler condition. By induction each Hi is routable in Gi which implies that H is
routable in G. 2

Definition 6 A set ∅ ⊂ S ⊂ V is central if G[S] and G[V \ S] are connected.

Lemma 7 Let G be a connected graph. Then G,H satisfy the cut condition if and only if the cut
condition is satisfied for each central set S.

Proof: Clearly, if G,H satisfy the cut condition for all sets then it is satisfied for the central sets.
Suppose the cut condition is satisfied for all central sets but there is some non-central set S′ such
that |δG(S)| < |δH(S)|. Choose S′ to be minimal among all such sets. We obtain a contradiction
as follows. Let S1, S2, . . . , Sk be the connected components in G \ δG(S′); since S′ is not central,
k ≥ 3. Moreover each Si is completely contained in S′ or in V \S′. We claim that some Sj violates
the cut-condition, whose proof we leave as an exercise. Moreover, by minimality in the choice of
S′, Sj is central, contradicting the assumption. 2

One can prove the following corollary by a similar argument.

Corollary 8 Let G,H satisfy the cut condition. If S′ is a tight set and S′ is not central, then there
is some connected component S contained in S′ or in V \ S′ such that S is a tight central set.

Uncrossing:

Lemma 9 Let G,H satisfy cut-condition, Let A,B be two tight sets such that A ∩ B 6= ∅ and
A∪B 6= V . If |δH(A)|+ |δH(B)| ≤ |δH(A∩B)|+ |δH(A∪B)|, then A∩B and A∪B are tight. If
|δH(A)|+ |δH(B)| ≤ |δH(A−B)|+ |δH(B −A)|, then A−B and A−B are tight.

Proof: By submodularity and symmetry of the cut function |δG| : 2V → R+, we have

|δG(A)|+ |δG(B)| ≥ |δG(A ∩B)|+ |δG(A ∪B)|

and also
δG(A)|+ |δG(B)| ≥ |δG(A−B)|+ |δG(B −A)|.

Now if
|δH(A)|+ |δH(B)| ≤ |δH(A ∩B)|+ |δH(A ∪B)|

then we have

|δG(A ∩B)|+ |δG(A ∪B)| ≥ |δH(A ∩B)|+ |δH(A ∪B)| ≥ |δH(A)|+ |δH(B)| = |δG(A)|+ |δG(B)|

where the first inequality follows from the cut-condition, the second from our assumption and the
third from the tightness of A and B. It follows that

|δG(A ∩B)| = |δH(A ∩B)|

and
|δG(A ∪B)| = |δH(A ∪B)|.

The other claim is similar. 2



Corollary 10 If A,B are tight sets and δH(A−B,B −A) = ∅ then A ∩B and A ∪B are tight.

Proof: We note that

|δH(A)|+ |δH(B)| = |δH(A ∩B)|+ |δH(A ∪B)|+ 2|δH(A−B,B −A)|.

Thus, if δH(A − B,B − A) = ∅ we have |δH(A)| + |δH(B)| = |δH(A ∩ B)| + |δH(A ∪ B)| and we
apply the previous lemma. 2

Proof: Now we come to the proof of the Okamura-Seymour theorem. Recall that G,H is a
counter example with 2|E| − |R| minimal. Then we have established that:

1. G is 2-connected.

2. every demand edge is in a tight cut.

3. no supply edge is parallel to a demand edge.

Without loss of generality we assume that the all the demands are incident to the outer/unbounded
face of G. Since G is 2-connected the outer face is a cycle C. Let X ⊂ V be a tight set; a tight
set exists since each demand edge is in some tight set. Then if X ∩C is not a contiguous segment,
X is not a central set as can be seen informally by the picture below; G[V \X] would have two or
more connected components.
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From Corollary 8 we can assume the existence of a tight set X such that X ∩C is a contiguous
segment. Choose such a tight set with X ∩ C minimal.

Let uw be one of the two edges of the cycle C that crosses X; let w ∈ X and u 6∈ X. Since
X is tight, δR(X) 6= ∅. For each r ∈ δR(X), let sr, tr be the endpoints of r with sr ∈ X ∩ C
and tr 6∈ X ∩ C. Choose r ∈ δR(X) such that tr is closest (in distance along the cycle C) to u in
C −X. Note that r is not parallel to uw. So if sr = w then tr 6= u and if tr = u then sr 6= w. Let
v ∈ {u,w} \ {sr, tr}, v exists by above; for simplicity choose v = w if sr 6= w.

Let R′ = (R \ {sr, tr}) ∪ {srv, vtr}. That is, we replace the demand edge srtr by two new
demand edges srv and vtr as shown in the figure.

Claim 11 G satisfies cut condition for R′ and E +R′ induces an Eulerian graph.

Assuming claim, we are done because 2|E| − |R′| < 2|E| − |R| and by induction R′ has an integral
multiflow in G, and R has an integer multiflow if R′ does.
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In the picture on the left v = w and on the right v = u.

u

w = sr

tr
X

C

u

w

tr
X

sr

C

Replacing srtr by new demands srv and vtr.

Trivial to see E +R′ induces an Eulerian graph. Suppose G does not satisfy the cut condition
for the demand set R′. Let Y be a cut that violates the cut condition for R′. For this to happen
Y must be a tight set for R in G; this is the reason why replacing srtr by srv and vtr violates the
cut condition for Y for R′. By complementing Y if necessary we can assume that v ∈ Y, sr, tr /∈ Y .
Further, by Corollary 8, we can assume Y is central and hence Y ∩C is a contiguous segment of C.

By choice of r there is no demand r′ between Y −X and X − Y . If there was, then tr′ would
be closer to u than tr. We have X,Y tight and

δR[X − Y, Y −X] = ∅.

We consider two cases. First, suppose X ∩ Y 6= ∅ (this is guaranteed if v = w). Then from
Corollary 10, X ∩ Y and X ∪ Y are tight since X ∩ Y 6= ∅ by assumption and X ∪ Y 6= V (since
tr ∈ V \ (X ∪ Y )). X − Y 6= ∅, since sr ∈ X − Y . Since X ∩ Y is a tight set and X ∩ Y 6= X, it
contradicts the choice of X as the tight set with X ∩ C minimal. If X ∩ Y = ∅ then v = u and
u ∈ Y ; again X ∪ Y 6= V . Note that the edge uw joins X and Y . In this case we claim that X ∪ Y
does not satisfy the cut condition which is a contradiction. To see this note that

|δG(X ∪ Y )| ≤ |δG(X)|+ |δG(Y )| − 2

since uw connects X to Y . However,

|δH(X ∪ Y )| = |δH(X)|+ |δH(Y )| = |δG(X)|+ |δG(Y )|
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Tight set Y in the two cases.

where the first inequality follows since X ∩ Y = ∅ and there are no demand edges between X − Y
and Y −X. The second inequality follows from the tightness of X and Y . 2

2 Sparse Cuts, Concurrent Multicomodity Flow and Flow-Cut
Gaps

In traditional combinatorial optimization, the focus has been on understanding and characterizing
those cases where cut condition implies existence of fractional/integral multiflow. However, as we
saw, even in very restrictive settings, cut condition is not sufficient. A theoretical CS/algorithms
perspective has been to quantify the “gap” between flow and cut. More precisely, suppose G
satisfies the cut condition for H. Is it true that there is a feasible multiflow in G that routes λdi
for each pair siti where λ is some constant in (0, 1)?

There are two reasons for considering the above. First, it is a mathematically interesting question.
Second, and this was the initial motivation from a computer science/algorithmic point of view, is to
obtain approximation algorithms for finding “sparse” cuts in graphs; these have many applications
in science and engineering. The following is known.

Theorem 12 Given a multiflow instance, it is co-NP complete to check if the cut-condition is
satisfied for the instance.

Definition 13 Given a multiflow instance the maximum concurrent flow for the given instance is
the maximum λ ≥ 0 such that there is a feasible multiflow if all demand values are multiplied by λ.

Proposition 14 There is a polynomial time algorithm that, given a multiflow instance, computes
the maximum concurrent flow.

Proof: Write a linear program:

max λ
flow for each siti ≥ λdi

Flow satisfies capacity constraints. We leave the details to the reader. 2



Definition 15 Given a multiflow instance on G,H, the sparsity of a cut U ⊂ V is

sparsity(U) :=
c (δG(U))
d (δH(U))

.

A sparsest cut is U ⊂ V such that sparsity(U) ≤ sparsity(U ′) for all U ′ ⊂ V . We refer to
minU⊂V sparsity(U) as the min-sparsity of the given multiflow instance.

Observation 16 (G,H) satisfies the cut condition implies sparsity(U) ≥ 1 for all U ⊂ V .

Proposition 17 In many multiflow instance, if λ∗ is the max concurrent flow then

λ∗ ≤ sparsity(U), ∀U ⊂ V.
The ratio min−sparity

λ∗ is the flow cut gap for the given instance.

For example,

with capacities and demands equal to 1, the flow-cut gap is 4
3 . Min-sparsity for the above instance

is 1 while λ∗ = 3
4 . In general, we are interested in quantifying flow-cut gaps for classes of instances

rather than a particular instance.

In the sequel, we think of G and H as ”topological” graphs in that they are not endowed with
capacities and demands. A multiflow instance on G,H is defined by c : E → R+ and d : R→ R+.
Note that by setting c(e) = 0 or d(r) = 0, we can “eliminate” some edges. We define α(G,H), the
flow-cut gap for G,H, as the supremum over all instances on G,H defined by capacities c : E → R+

and d : R→ R+. We can then define for a graph G:

α(G) = sup
H=(T,R)
T⊆V

(G,H).

Some results that we mentioned on the sufficiency of cut condition for feasible flow can be
restated as follows: α(G,H) = 1 if |R| = 2 (Hu’s theorem), α(G,H) = 1 if G is planar and T is the
vertex set of a face of G (Okamura-Seymour theorem), and so on. What can we say about α(G)
for an arbitrary graph?

Theorem 18 (Linial-London-Rabinovich, Aumann-Rabani) α(G) = O(log n) where n =
|V | and in particular α(G,H) = O(log |R|) i.e. the flow-cut gap is O(log k) for k-commodity flow.
Moreover there exist graphs G,H for which α(G,H) = Ω(log |R|), in particular there exist graphs
G for which α(G) = Ω(logn).

Conjecture 19 α(G) = O(1) if G is a planar graph.

Theorem 20 (Rao) α(G) = O(
√

log n) for a planar graph G.
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