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1 Multiflows

The maxflow-mincut theorem of Ford and Fulkerson generalizes Menger’s theorem and is a funda-
mental result in combinatorial optimization with many applications.

Theorem 1 In a digraph D = (V,A) with arc capacity function c : A → R+, the maximum s-t
flow value is equal to the minimum s-t capacity cut value. Moreover, if c is integer valued, then
there is an integer valued maximum flow.

In particular, the maximum number of s-t arc-disjoint paths in a digraph is equal to the min-
imum number of arcs whose removal disconnects s from t (Menger’s theorem). When applied to
undirected graphs we obtain the edge-disjoint and node-disjoint path version of Menger’s Thoerem.

In many applications in networks we are interested in multiflows, also referred to as multi-
commodity flows. s− t flows are also referred to as single-commodity flows.

A multiflow instance in a directed graph consists of a directed “supply” graph D = (V,A)
with non-negative arc capacities c : A → R+ and a demand graph H = (T,R) with T ⊆ V called
terminals, and non-negative demand requirements d : R → R+. The arcs in R are referred to as
nets. The demand graph can also be specified as a set of ordered pairs (s1, t1), . . . , (sk, tk) with
di ∈ R+ denoting the demand for (si, ti). This is referred to as the k-commodity flow problem.

A multiflow instance in an undirected graph consists of an undirected supply graph G = (V,E)
and an undirected demand graph H = (T,R). The demand graph can be specified by a collection
of unordered pairs s1t1, . . . , sktk.

Given a multiflow instance in a directed graph D = (V,A) with demand graph H = (T,R), a
multiflow is a collection of flows, fr, r ∈ R where fr is an sr-tr flow and r = (sr, tr). A multiflow
satisfies the capacity constraints of the supply graph if for each arc a ∈ A,

∑

r∈R

fr(a) ≤ c(a). (1)

The multiflow satisfies the demands if for each r = (sr, tr) ∈ R, the fr flow from sr to tr is at
least d(r).

For undirected graphs we need a bit more care. We say that f : E → R+ is an s − t flow if
there is an orientation D = (V,A) of G = (V,E) such that f ′ : A→ R+ defined by the orientation
and f : E → R+ is an s− t flow in D. Thus fr, r ∈ R where fr : E → R+ is a multiflow if each fr

is an sr-tr flow. It satisfies the capacity constraints if ∀e ∈ E,

∑

r∈R

fr(e) ≤ c(e). (2)

We say a multiflow is integral if each of the flows is integer valued; that is fr(a) is an integer for
each arc a and each r ∈ R. Similarly half-integral (i.e., each flow on an arc is an integer multiple
of 1/2).



Proposition 2 Given a multiflow instance in a directed graph, there is a polynomial time algorithm
to check if there exists a multiflow that satisfies the capacities of the supply graph and the demand
requirements of the demand graph.

Proof: Can be solved by expressing the problem as a linear program. Variables fr(a) r ∈ R, a ∈ A.
Write standard flow conservation constraints that ensures fr : A → R+ is a flow for each r (flow
conservation at each node other than the source and destination of r). We add the following set of
constraints to ensure capacity constraints of the supply graph are respected.

∑

r∈R

fr(a) ≤ c(a) a ∈ A. (3)

Finally, we add constraints that the value of fr (leaving the source of r) should be at least d(r). 2

Proposition 3 Given an undirected multiflow instance, there is a polynomial time algorithm to
check if there is a feasible multiflow that satisfies the supply graph capacities and the demand
requirements.

Proof: We reduce it to the directed flow case as follows. Given G = (V,E) obtain a digraph D =
(V,A) by dividing each edge e into two arcs −→e and ←−e . Now we have variable fr(a), a ∈ A, r ∈ R,
and write constraints that ensure that fr : A → R+ is a flow of value d(r) from sr to tr where
r = srtr. The capacity constraint ensures that the total flow on both −→e and←−e is at most c(e), i.e.,

∑

r∈R

(fr(
−→e ) + fr(

←−e )) ≤ c(e), e ∈ E. (4)

2

LP duality gives the following useful necessary and sufficient condition; it is some times referred
to as the Japanese theorem.

Theorem 4 A multiflow instance in directed graph is feasible iff

k∑

i=1

diℓ(si, ti) ≤
∑

a∈A

c(a)ℓ(a) (5)

for all length functions ℓ : A→ R+.

Here ℓ(si, ti) is the shortest path distance from si to ti with arc lengths ℓ(a). For undirected
graph the characterization is similar

k∑

i=1

diℓ(si, ti) ≤
∑

e∈E

c(e)ℓ(e) (6)

for all ℓ : E → R+.
Proof: Consider the path formulation we prove it for undirected graphs. Let Pi be the set of siti
path in G. Let fi : Pi → R+ be an assignment of flow values to paths in Pi. We want feasibility of

∑

p∈Pi

fi(p) ≥ di i = 1 to k (7)



k∑

i=1

∑

p∈Pi:e∈p

fi(p) ≤ c(e) e ∈ E (8)

fi(p) ≥ 0, p ∈ Pi, 1 ≤ i ≤ k. (9)

We apply Farkas lemma. Recal that Ax ≤ b, x ≥ 0 has a solution iff yb ≥ 0 for each row vector
y ≥ 0 with yA ≥ 0. We leave it as an exercise to derive the statement from Farkas lemma applied
to the above system of inequalities. 2

It is useful to interpret the necessity of the condition. Suppose for some ℓ : E → R+

k∑

i=1

dil(si, ti) >
∑

e∈E

c(e)ℓ(e) (10)

we show that there is no feasible multiflow. For simplicity assume ℓ is integer valued. Then
replace an edge e with length ℓ(e) by a path of length ℓ(e)

and place capacity c(e) on each edge. Suppose there is a feasible flow. For each (si, ti), each
flow path length is of length at least l(si, ti) ⇒ total capacity used up by flow for (si, ti) is ≥
diℓ(si, ti). But total capacity available is

∑
e c(e)ℓ(e) (after expansion). Hence if

∑k
i=1

diℓ(si, ti) >∑
e∈E c(e)ℓ(e), there cannot be a feasible multiflow.
To show that a multiflow instance is not feasible it is sufficient to give an appropriate arc length

function that violates the necessary condition above.

2 Integer Multiflow and Disjoint Paths

When all capacities are 1 and all demands are 1 the problem of checking if there exists an inte-
ger multiflow is the same as asking if there exist arc-disjoint path (edge-disjoint path if graph is
undirected) connecting the demand pairs.

The edge-disjoint paths problem (EDP) is the following decision problem: given supply graph
D = (V,A) (or G = (V,E)) and a demand graph H = (T,R), are there arc/edge-disjoint paths
connecting the pairs in R?

Theorem 5 (Fortune-Hopcroft-Wyllie 1980) EDP in directed graphs is NP-complete even for
two pairs.

Theorem 6 EDP in undirected graphs is NP-complete when |R| is part of the input, even when
|R| consists of three sets of parallel edges.

A deep, difficult and fundamental result of Robertson and Seymour is that EDP in undirected
graphs is polynomial-time solvable when |R| is fixed. In fact they prove that the vertex-disjoint
path problem (the pairs need to be connected by vertex disjoint paths) is also tractable.

Theorem 7 (Robertson-Seymour) The vertex-disjoint path problem is polynomial-time solvable
if the number of demand pairs is a fixed constant.

The above theorem relies on the work of Robertson and Seymour on graph minors.



3 Cut Condition—Sparsest Cuts and Flow-Cut Gaps

A necessary condition for the existence of a feasible multiflow for a given instance is the so called
cut-condition. In directed graphs it is

c(δ+

D(U)) ≥ d(δ+

H(U)) ∀U ⊂ V (11)

Demand arcs

Supply arcs

u

where c(δ+

D(U)) is capacity of all arcs leaving U , and d(δ+

H(U)) is the demand of all demand arcs
leaving U . It is easy to see that this condition is necessary. Formally one sees that this condition is
necessary by considering the length function ℓ : A→ R+ where ℓ(a) = 1 if a ∈ δ+

D(U) and ℓ(a) = 0.
For undirected graphs the cut condition states

c(δ+

G(U)) ≥ d(δ+

H (U)) ∀U ⊂ V (12)

Demand arcs

Supply arcs

u

Cut condition is not sufficient in general. Consider the following examples in directed graphs

s1

t2

t1

S2 s1

t2 t1

S2

Cut condition is true for each case but no feasible multiflows exists as can be seen by considering
the length function ℓ(a) = 1 for each arc a.

For undirected graphs the following example is well known. Supply graph is K2,3, a series-
parallel graph. Again, cut-condition is satisfied but ℓ(e) = 1 for each e shows no feasible multiflow
exists.



Dotted edges are 

demand edges

4 Sufficiency of Cut Condition

Given that the cut condition is not sufficient for feasible flow it is natural to consider cases
where it is indeed sufficient. First consider directed graphs. Suppose we have demand pairs
of the form (s, t1), (s, t2), . . . , (s, tk), i.e., all pairs share a common source. Then it is easy to
see that cut condition implies feasible multiflow by reduction to the single-commodity flow case
by connecting t1, t2, . . . , tk to a common sink t. Similarly if the demand pairs are of the form
(s1, t), (s2, t), . . . , (sk, t) with a common source.

It turns out that these are the only interesting cases for which cut condition suffices. See
Theorem 70.3 in Schrijver Book.

For undirected graphs several non-trivial and interesting cases where the cut-condition is suffi-
cient are known. We list a few below:

• Hu’s 2-commodity theorem shows that if there are only two pairs s1t1 and s2t2 then cut-
condition is sufficient.

• Okamura-Seymour theorem states that if G is a planar graph and T is vertex set of a single
face then cut condition is sufficient. Note that the theorem implies that for capacitated ring
supply graphs the cut condition is sufficient.

• Okamura’s theorem generalizes Okamura-Seymour Theorem. If G is planar and there are two
faces F1 and F2 such that each st ∈ R has both s, t on one of the faces then cut condition is
sufficient.

• Seymour’s Theorem shows that if G + H is planar then cut condition is sufficient.

For all of the above cases one has the following stronger result. If G + H is Eulerian then
the flow is guaranteed to be integral. To see that the Eulerian condition is necessary for integral
flow in each of the above cases, consider the example below where the only feasible multiflow is a
half-integral.

s1

s2

t2

t1

Only ½ integral

flow exists
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