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1 Submodular Flows

Network flows are a fundamental object and tool in combinatorial optimization. We have also seen
submodular functions and their role in matroids, matroid intersection, polymatroids and polyma-
troid intersection. Edmonds and Giles developed the framework of submodular flows to find a
common generalization of network flow and polymatroid intersection. Here is the model.

Definition 1 (Crossing Family) Let D = (V,A) be a directed graph and let C ⊆ 2V be a family

of subsets of V. C is called a crossing family if: A,B ∈ C , A∩B 6= ∅, A∪B 6= V ⇒ A∩B ∈ C

and A ∪ B ∈ C .

Definition 2 (Crossing Submodular) Let C be a crossing family. A function f : C → R is

called crossing submodular on C if it satisfies: A,B ∈ C , A∩B 6= ∅, A∪B 6= V ⇒ f(A)+f(B) ≥
f(A ∪ B) + f(A ∩ B).

Definition 3 (Submodular Flow) Let D = (V,A) be a digraph, C be a crossing family, and f
be a crossing submodular function on C . A vector x ∈ R

A is called a submodular flow if

x(δ−(u)) − x(δ+(u)) ≤ f(u), ∀u ∈ C (1)

Theorem 4 (Edmonds-Giles, 1977) The system of inequalities shown in Equation 1 is box-TDI

where C is a crossing family on V and f is crossing submodular on C .

Proof: We consider the primal-dual pair of LPs below where w : A → Z+ and ℓ, u are integer
vectors.

max
∑

wx

s.t. x(δ−(U)) − x(δ+(U)) ≤ f(U) U ∈ C

ℓ ≤ x ≤ u

and
min

∑

U∈C

f(U)y(U) +
∑

a∈A

u(a)z1(a) −
∑

a∈A

ℓ(a)z2(a)

s.t.
∑

U :U∈C ,a∈δ−(U)

y(U) −
∑

U :U∈C ,a∈δ+(U)

y(U) + z1(a) − z2(a) = w(a) a ∈ A

y, z1, z2 ≥ 0

A family of sets F ⊆ 2V is cross-free if for all A,B ∈ F the following holds:

A ⊆ B or B ⊆ A or A ∩ B = ∅ or A ∪ B = V .



Claim 5 There exists an optimum solution y, z1, z2 such that F = {U ∈ C | y(U) > 0} is cross-

free.

Proof: Suppose F is not cross-free. Then let A,B ∈ F , such that y(A) > 0 and y(B) > 0 and
A ∩ B 6= ∅ and A ∪ B 6= V . Then add ǫ > 0 to y(A ∪ B), y(A ∩ B) and subtract ǫ > 0 from y(A)
and y(B). By submodularity of f , the objective function increases or remains same. We claim that
alterting y in this fashion maintains dual feasibility; we leave this as an exercise.

By repeated uncrossing we can make F cross-free. Formally one needs to consider a potential
function. For example, among all optimal solutions pick one that minimizes

∑

U∈C

y(U)|U ||V \U |

2

Theorem 6 Let F be a cross-free family on 2V . Let M be an |A| × |F | matrix where

Ma,U =







1 if a ∈ δ−(U)
−1 if a ∈ δ+(U)
0 otherwise

Then M is TUM.

The proof of the above theorem proceeds by showing that M is a network matrix. See Schrijver
Theorem 13.21 for details [1].

By the above one sees that the non-negative components of y, z1, z2 are determined by [M, I,−I]
and integer vector w where M is TUM. From this we infers that there exists an integer optimum
solution to the dual. 2

Corollary 7 The polyhedron P determined by

x(δ−(U)) − x(δ+(U)) ≤ f(U) U ∈ C

l ≤ x ≤ u

is an integer polyhedron whenever f is integer valued and l, u are integer vectors.

One can show that optimality on P can be done in strongly polynomial time if one has a value
oracle for f . This can be done via a reduction to polymatroid intersection. We refer to Schrijver,
Chapter 60 for more details [1].

2 Applications

Submodular flows are a very general framework as they combine graphs and submodular functions.
We gave several applications below.



2.1 Circulations

Given a directed graph D = (V,A), x : A → R is a circulation if

x(δ−(v)) − x(δ+(v)) = 0, ∀v ∈ V

This can be modeled as a special case of submodular flow by setting C = {{v} | v ∈ V } and f = 0.
We get the inequalities

x(δ−(v)) − x(δ+(v)) ≤ 0, v ∈ V.

One can check that the above inequalities imply that for any ∅ ⊂ U ⊂ V the inequality x(δ−(U)−
x(δ+(U) ≤ 0 holds by adding up the inequalities for each v ∈ U . Combining this with the inequality
x(δ−(V \U)−x(δ+(V \U) ≤ 0, we have x(δ−(U)−x(δ+(U) = 0 for all ∅ ⊂ U ⊂ V and in particular
for each v ∈ V . The box-TDI result of submodular flow implies the basic results on circulations
and flows including Hoffman’s circulation theorem and the max-flow min-cut theorem.

2.2 Polymatroid Intersection

We saw earlier that the system
x(U) ≤ f1(U) U ⊆ S

x(U) ≤ f2(U) U ⊆ S

is box-TDI whenever f1, f2 are submodular functions on S. We can derive this from submodular
flows as follows. Define S′ and S′′ are copies of S. Let V = S′

⊎

S′′ and define C = {U ′ | U ⊆
S} ∪ {S′ ∪ U ′′ | U ⊆ S}, where U ′ and U ′′ denote the sets of copies of elements of U in S′ and
S′′ [1].

Claim 8 C is a crossing family.

Exercise 9 Prove Claim 8.

We further define f : C → R+ by

f(U ′) = f1(U) U ⊆ S

f(V \U ′′) = f2(U) U ⊆ S

f(S′) = min{f1(S), f2(S)}

Claim 10 f is crossing submodular on C .

Exercise 11 Prove Claim 10.

Now define G = (V,A) where A = {(s′′, s′)|s ∈ S}, as shown in Figure 1. The submodular flow
polyhedron is

x(δ−(Z)) − x(δ+(Z)) ≤ f(Z) Z ∈ C

If Z = U ′ where U ⊆ S, then we get x(U) ≤ f1(U). And if Z = V \U ′′, as shown in Figure 2, then
we get x(U) ≤ f2(U), U ⊆ S. Thus, we recover the polymatroid intersection constraints. Since the
submodular flow constraint inequalities are box-TDI, it implies that the polymatroid intersection
constraints are also box-TDI.



Figure 1: A Directed Graph Defined on S

Figure 2: Z = V \U ′′

2.3 Nash-Williams Graph Orientation Theorem

We stated the following theorem of Nas-Williams in the previous lecture.

Theorem 12 If G is 2k-edge-connected then it has an orientation D such that D is k-arc-connected.

Frank(1980) [2] showed that Theorem 12 can be derived from submodular flows. Consider an
arbitrary orientation D of G. Now if D is k-arc-connected we are done. Otherwise we consider
the problem of reversing the orientation of some arcs of D such that the resulting graph is k-arc-
connected. We set it up as follows.

Let D = (V,A), define a variable x(a), a ∈ A where x(a) = 1 if we reverse the orientation of
a. Otherwise x(a) = 0. For a set U ⊂ V we want k arcs coming in after applying the switch of
orientation, i.e., we want

x(δ−(u)) − x(δ+(u)) ≤ |δ−(u)| − k ∀ ∅ ⊂ U ⊂ V

Note that C = {U | ∅ ⊂ U ⊂ V } is a crossing family and f(U) = |δ−D(u)|−k is crossing submodular.
Hence by Edmonds-Giles theorem, the polyhedron determined by the inequalities

x(δ−(u)) − x(δ+(u)) ≤ |δ−(u)| − k ∅ ⊂ U ⊂ V

x(a) ∈ [0, 1] a ∈ A

is an integer polyhedron. Moreover, the polyhedron is non-empty since x(a) = 1/2,∀a ∈ A satisfies
all the constraints. To see this, let ∅ ⊂ U ⊂ V , and let h = δ−D(U) and ℓ = δ+

D(U), then we have
h + ℓ ≥ 2k since G is 2k-edge-connected. Then by setting x(a) = 1/2,∀a ∈ A, for U we need

h

2
−

l

2
≤ h − k ⇒

h + l

2
≤ k

which is true. Thus there is an integer vector x in the polyhedron for D if G is 2k-edge-connected.
By reversing the arcs A′ = {a|x(a) = 1} in D we obtain a k-arc-connected orientation of G.



2.4 Lucchesi-Younger theorem

Theorem 13 (Lucchesi-Younger) In any weakly-connected digraph, The size of the minimum

cardinality dijoin equals the maximum number of disjoint directed cuts.

Proof: Let D = (V,A) be a directed graph and let C = {U | ∅ ⊂ U ⊂ V, |δ+(U)| = 0}, i.e.,
U ∈ C iff U induces a directed cut. We had seen that C is a crossing family. Let f : C → R

be f(U) = −1,∀U ∈ C , clearly f is crossing submodular. Then by Edmonds-Giles theorem the
following set of inequalities is TDI.

x(δ−(U)) − x(δ+(U)) ≤ −1 U ∈ C

x ≤ 0

We note that δ+(U) = ∅ for each U ∈ C . We can rewrite the above polyhedron as the one below
by replacing −x by x.

x(δ−(U)) ≥ 1 U ∈ C

x ≥ 0

Note that the above is a “natural” LP relaxation for finding a set of arcs that cover all directed
cuts. The above polyhedron is integral, and hence

min
∑

a∈A

x(a)

x(δ−(U)) ≥ 1 U ∈ C

x ≥ 0

gives the size of a minimum cardinality dijoin.
Consider the dual

max
∑

U∈C

y(U)

s.t.
∑

U :a∈δ−(U),U∈C

y(U) ≤ 1 a ∈ A

y ≥ 0

The dual is an integer polyhedron since the primal inequality system is TDI and the objective
function is an integer vector. It is easy to see that the optimum value of the dual is a maximum
packing of arc-disjoint directed cuts. Therefore by strong duality we obtain the Lucchesi-Younger
theorem. 2
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