CS 598CSC: Approximation Algorithms	Lecture date: April 22, 2009
Instructor: Chandra Chekuri	Scribe: Zhenhui Li

We describe two well known theorems in combinatorial optimization. We prove the theorems using submodular flows later.

1 Graph Orientation

Definition 1 Let $G=(V, E)$ be an undirected graph. For $u, v \in V$, we denote by $\lambda_{G}(u, v)$ the edgeconnectivity between u and v in G, that is, the maximum number of edge-disjoint paths between u and v. Similarly for a directed graph $D=(V, A), \lambda_{D}(u, v)$ is the maximum number of arc-disjoint paths from u to v.

Note that for an undirected graph $G, \lambda_{G}(u, v)=\lambda_{G}(v, u)$ but it may not be the case that $\lambda_{D}(u, v)=\lambda_{D}(v, u)$ in a directed graph D.

Definition $2 G$ is k-edge-connected if $\lambda_{G}(u, v) \geq k \forall u, v \in V$. Similarly, D is k-arc-connected if $\lambda_{D}(u, v) \geq k \forall u, v \in V$.

Proposition $1 G$ is k-edge-connected iff $|\delta(S)| \geq k \forall S \subset V . D$ is k-arc-connected iff $\left|\delta^{+}(S)\right| \geq k$ $\forall S \subset V$.

Proof: By Menger's theorem.
Definition $3 D=(V, A)$ is an orientation of $G=(V, E)$ if D is obtained from G by orienting each edge $u v \in E$ as an arc (u, v) or (v, u).

Theorem 2 (Robbins 1939) G can be oriented to obtain a strongly-connected directed graph iff G is 2-edge-connected.

Proof: " \Rightarrow " Suppose $D=(V, A)$ is a strongly connected graph obtained as an orientation of $G=(V, E)$. Then, since $\forall S \subset V,\left|\delta_{D}^{+}(S)\right| \geq 1$ and $\left|\delta_{D}^{-}(S)\right| \geq 1$, we have $\left|\delta_{G}(S)\right| \geq 2$. Therefore, G is 2-edge-connected.
" \Leftarrow " Let G be a 2-edge-connected graph. Then G has an ear-decomposition. In other words, G is either a cycle C or G is obtained from a 2-edge-connected graph G^{\prime} by adding an ear P (a path) connecting two not-necessarily distinct vertices $u, v \in V$.

Figure 1: G is either a cycle C or is G^{\prime} plus an ear P.
If $G=C$, orient it to obtain a directed cycle which is strongly-connected. Otherwise, inductively, G^{\prime} has an orientation that is strongly-connected. Extend the orientation of G^{\prime} to G by orienting
P from u to v (or v to u). It is easy to check that this orientation results in strongly-connected graph.

An alternative proof is as follows. Do a depth-first-search (DFS) of G starting at some node r. One obtains a DFS tree T. Orient all edges of T away from r to obtain an arborescence. Every other edge is a back-edge, that is if $u v \in E(G) \backslash E(T)$, then, either u is the ancestor of v in T or v is an ancestor of u in T. Orient $u v$ from the descendant to the ancestor. We leave it as an exercise to argue that this is a strongly-connected orientation of G iff G is 2-edge-connected. Note that this is an easy linear time algorithm to obtain the orientation.

Figure 2: Orientation of a 2-edge-connected graph via a DFS tree.

Nash-Williams proved the following non-trivial extension.
Theorem 3 (Nash-Williams) If G is $2 k$-edge-connected, then it has an orientation that is k -arc-connected.

In fact, he proved the following deep result, of which the above is a corollary.
Theorem 4 (Nash-Williams) G has an orientation D in which $\lambda_{D}(u, v) \geq\left\lfloor\lambda_{G}(u, v) / 2\right\rfloor$ for all $u, v \in V$.

The proof of the above theorem is difficult - see [1]. We will prove the easier version using submodular flows later.

2 Directed Cuts and Lucchesi-Younger Theorem

Definition 4 Let $D=(V, A)$ be a directed graph. We say that $C \subset A$ is a directed cut if $\exists S \subset V$ such that $\delta^{+}(S)=\emptyset$ and $C=\delta^{-}(S)$.

If D has a directed cut then D is not strongly-connected.
Definition $5 A$ dijoin (also called a directed cut cover) in $D=(V, A)$ is a set of arcs in A that intersect each directed cut of D.

It is not difficult to see that the following are equivalent:

- $B \subseteq A$ is a dijoin.

Figure 3: A directed cut $C=\delta^{-}(S)$.

- shrinking each arc in B results in a strongly-connected graph.
- adding all reverse arcs of B to D results in a strongly-connected graph.

Given $B \subseteq A$, it is therefore, easy to check if B is a dijoin; simply add the reverse arcs of B to D and check if the resulting digraph is strongly connected or not.

Definition 6 A digraph D is weakly-connected if the underlying undirected graph is connected.
Theorem 5 (Lucchesi-Younger) Let $D=(V, A)$ be a weakly-connected digraph. Then the minimum size of a dijoin is equal to the maximum number of disjoint directed cuts.

A dijoin intersects every directed cut so its size is at least the the maximum number of disjoint directe cuts. The above theorem is yet another example of a min-max result. We will prove this later using submodular flows. One can derive easily a weighted version of the theorem.

Corollary 6 Let $D=(V, A)$ be a digraph with $\ell: A \rightarrow \mathbb{Z}_{+}$. Then the minimum length of a dijoin is equal to the maximum number of directed cuts such that each arc a is in at most $\ell(a)$ of them (in other words a maximum packing of directed cuts in ℓ).

Proof: If $\ell(a)=0$, contract it. Otherwise replace a by a path of length $\ell(a)$. Now apply the Lucchesi-Younger theorem to the modified graph.

As one expects, a min-max result also leads to a polynomial time algorithm to compute a minimum weight dijoin and a maximum packing of directed cuts.

Woodall conjectured the following, which is still open. Some special cases have been solved [1].
Conjecture 1 (Woodall) For every directed graph, the minimum size of a directed cut equals to the maximum number of disjoint dijoins.

We describe an implication of Lucchesi-Younger theorem.
Definition 7 Given a directed graph $D=(V, A), A^{\prime} \subseteq A$ is called a feedback arc set if $D\left[A \backslash A^{\prime}\right]$ is acyclic, that is, A^{\prime} intersects each directed cycle of D.

Computing a minimum cardinality feedback arc set is NP-hard. Now suppose D is a plane directed graph (i.e., a directed graph that is embedded in the plane). Then one defines its dual graph D^{*} as follows. For each arc (w, x) of D, we have a dual $\operatorname{arc}(y, z) \in D^{*}$ that crosses (w, x) from "left" to "right". See example below.

Figure 4: A planar digraph and its dual.
Proposition 7 The directed cycles of D correspond to directed cuts in D^{*} and vice versa.
Thus, a feedback arc set of D corresponds to a dijoin in D^{*}. Via Lucchesi-Younger theorem, we have the following corollary.

Corollary 8 For a planar directed graph, the minimum size of a feedback arc set is equal to the maximum number of arc-disjoint directed cycles.

Using the algorithm to compute a minimum weight dijoin, we can compute a minimum weight feedback arc set of a planar digraph in polynomial time.

3 Polymatroid Intersection

Recall the definition of total dual integrality of a system of inequalities.
Definition 8 rational system of inequalities $A x \leq b$ is TDI if for all integral c, $\min \{y b \mid y \geq$ $0, y A=c\}$ is attained by an integral vector y^{*} whenever the optimum exists and is finite.

Definition 9 A rational system of inequalities $A x \leq b$ is box-TDI if the system $d \leq x \leq c, A x \leq b$ is TDI for each $d, c \in \mathcal{R}^{n}$.

In particular, we have the following. If $A x \leq b$ is box-TDI, then the polyhedron $\{x \mid A x \leq$ $b, d \leq \ell \leq u\}$ is an integer polyhedron whenever b, ℓ, u are integer vectors.

Recall that if $f: 2^{S} \rightarrow \mathcal{R}$ is a submodular function, $E P_{f}$ is the extended polymatroid defined as

$$
\left\{x \in \mathcal{R}^{S} \mid x(U) \leq f(U), U \subseteq S\right\}
$$

We showed that the system of inequalities $x(U) \leq f(U), U \subseteq S$ is TDI. In fact, one can show that the system is also box-TDI. Polymatroids generalize matroids. One can also consider polymatroid intersection which generalizes matroid intersection.

Let f_{1}, f_{2} be two submodular functions on S. Then the polyhedron $E P_{f_{1}} \cap E P_{f_{2}}$ described by

$$
\begin{array}{ll}
x(U) \leq f_{1}(U) & U \subseteq S \\
x(U) \leq f_{2}(U) & U \subseteq S
\end{array}
$$

is an integer polyhedron whenever f_{1} and f_{2} are integer valued. We sketch a proof of the following theorem.

Theorem 9 (Edmonds) Let f_{1}, f_{2} be two submodular set functions on the ground set S. The system of inequalities

$$
\begin{array}{ll}
x(U) \leq f_{1}(U) & U \subseteq S \\
x(U) \leq f_{2}(U) & U \subseteq S
\end{array}
$$

is box-TDI.
Proof: (Sketch) The proof is similar to that of matroid intersection. Consider primal-dual pair below

$$
\begin{gathered}
\max w x \\
x(U) \leq f_{1}(U) \quad U \subseteq S \\
x(U) \leq f_{2}(U) \quad U \subseteq S \\
\ell \leq x \leq u \\
\min \sum_{U \subseteq S}\left(f_{1}(U) y_{1}(U)+f_{2}(U) y_{2}(U)\right)+\sum_{a \in S} u(a) z_{1}(a)-\sum_{a \in S} \ell(a) z_{2}(a) \\
\sum_{a \in U}\left(y_{1}(U)+y_{2}(U)\right)+z_{1}(a)-z_{2}(a)=w(a), a \in S \\
y \geq 0, z_{1}, z_{2} \geq 0
\end{gathered}
$$

Claim 10 There exists an optimal dual solution such that $\mathcal{F}_{1}=\left\{U \mid y_{1}(U)>0\right\}$ and $\mathcal{F}_{2}=\{U \mid$ $\left.y_{2}(U)>0\right\}$ are chains.

The proof of the above claim is similar to that in matroid intersection. Consider $\mathcal{F}_{1}=\{U \mid$ $\left.y_{1}(U)>0\right\}$. If it is not a chain, there exist $A, B \in \mathcal{F}_{1}$ such that $A \not \subset B$ and $B \not \subset A$. We change y_{1} by adding ϵ to $y_{1}(A \cup B)$ and $y_{1}(A \cap B)$ and subtracting ϵ from $y_{1}(A)$ and $y_{1}(B)$. One observes that the feasibility of the solution is maintained and that the objective function can only decrease since f_{1} is submodular. Thus, we can uncross repeatedly to ensure that \mathcal{F}_{1} is a chain, similarly \mathcal{F}_{2}.

Let $y_{1}, y_{2}, z_{1}, z_{2}$ be an optimal dual solution such that \mathcal{F}_{1} and \mathcal{F}_{2} are chains. Consider $\mathcal{F}=\mathcal{F}_{1} \cup$ \mathcal{F}_{2} and the $S \times \mathcal{F}$ incidence matrix M. As we saw earlier in the proof for matroid intersection, M is TUM. We then have $y_{1}, y_{2}, z_{1}, z_{2}$ are determined by a system $\left[\begin{array}{llll}y_{1} & y_{2} & z_{1} & z_{2}\end{array}\right]\left[\begin{array}{lll}M & I & -I\end{array}\right]=w$, where w is integer and M is TUM. Since $\left[\begin{array}{lll}M & I & -I\end{array}\right]$ is TUM, there exists integer optimum solution.

Note that, one can separate over $E P_{f_{1}} \cap E P_{f_{2}}$ via submodular function minimization and hence one can optimize $E P_{f_{1}} \cap E P_{f_{2}}$ in polynomial time via the ellipsoid method. Strongly polynomial time algorithm can also be derived. See [1] for details.

4 Submodularity on Restricted Families of Sets

So far we have seen submodular functions on a ground set S. That is $f: 2^{S} \rightarrow R$ and $\forall A, B \subseteq S$,

$$
f(A)+f(B) \geq f(A \cap B)+f(A \cup B)
$$

In several applications, one needs to work with restricted families of subsets. Given a finite set S, a family of sets $\mathcal{C} \subseteq 2^{S}$ is

- a lattice family if $\forall A, B \in \mathcal{C}, A \cap B \in \mathcal{C}$ and $A \cup B \in \mathcal{C}$.
- an intersecting family if $\forall A, B \in \mathcal{C}$ and $A \cap B \neq \emptyset$, we have $A \cap B \in \mathcal{C}$ and $A \cup B \in \mathcal{C}$.
- a crossing family if $A, B \in \mathcal{C}$ and $A \cap B \neq \emptyset$ and $A \cup B \neq S$, we have $A \cap B \in \mathcal{C}$ and $A \cup B \in \mathcal{C}$.

For each of the above families, a function f is submodular on the family if

$$
f(A)+f(B) \geq f(A \cup B)+f(A \cap B)
$$

whenever $A \cap B, A \cup B$ are guaranteed to be in family for A, B. Function f is called intersection submodular and crossing submodular if \mathcal{C} is intersecting and crossing family respectively.

We give some examples of interesting families that arise from directed graphs. Let $D=(V, A)$ be a directed graph.

Example $1 \mathcal{C}=2^{V} \backslash\{\emptyset, V\}$ is a crossing family.
Example 2 Fix $s, t \in V, \mathcal{C}=\{U \mid s \in U, t \notin U\}$ is lattice, intersecting, and crossing family.
Example $3 \mathcal{C}=\left\{U \subset V \mid U\right.$ induces a directed cut i.e. $\delta^{+}(U)=\emptyset$ and $\left.\emptyset \subset U \subset V\right\}$ is a crossing family.

For the above example, we sketch the proof that \mathcal{C} is a crossing family. If $A, B \in \mathcal{C}$ and $A \cap B \neq \emptyset$ and $A \cup B \neq V$, then by submodularity of $\delta^{+},\left|\delta^{+}(A \cup B)\right|+\left|\delta^{+}(A \cap B)\right| \leq\left|\delta^{+}(A)\right|+\left|\delta^{+}(B)\right|$. Therefore we have $\delta^{+}(A \cup B)=\emptyset$ and $\delta^{+}(A \cap B)=\emptyset$ and more over $A \cap B$ and $A \cup B$ are non-empty. Hence they both belong to \mathcal{C} as desired.

Various polyhedra associates with submodular functions and the above special families are known to be well-behaved.

For lattice families the system

$$
x(U) \leq f(U), U \in \mathcal{C}
$$

is box-TDI. Also, the following system is also box-TDI

$$
\begin{aligned}
& x(U) \leq f_{1}(U), U \in \mathcal{C}_{1} \\
& x(U) \leq f_{2}(U), U \in \mathcal{C}_{2}
\end{aligned}
$$

where \mathcal{C}_{1} and \mathcal{C}_{2} are lattice families and f_{1} and f_{2} are submodular on \mathcal{C}_{∞} and \mathcal{C}_{2} respectively. The above facts also hold for intersecting families and intersecting submodular functions.

For crossing family \mathcal{C}, the system

$$
x(U) \leq f(U)
$$

is not necessarily TDI. However, the system

$$
\begin{aligned}
x(U) & \leq f(U), U \in \mathcal{C} \\
x(S) & =k
\end{aligned}
$$

where $k \in R$ is box-TDI. Also, the system

$$
\begin{aligned}
x(U) & \leq f_{1}(U), U \in \mathcal{C}_{1} \\
x(U) & \leq f_{2}(U), U \in \mathcal{C}_{2} \\
x(S) & =k
\end{aligned}
$$

is box-TDI for crossing families \mathcal{C}_{1} and \mathcal{C}_{2} with f_{1} and f_{2} crossing supermodular on \mathcal{C}_{1} and \mathcal{C}_{2} respectively.

Although the polyhedra are well-behaved, the separation problem for them is not easy since one needs to solve submodular function minimization over a restricted family \mathcal{C}. It does not suffice to have a value oracle for f on sets in \mathcal{C}; one needs additional information on the representation of \mathcal{C}. We refer the reader to 1 for more details.

References

[1] A. Schrijver. Combinatorial Optimization. Springer-Verlag Berlin Heidelberg, 2003.
[2] Lecture notes from Michel Goemans's class on Combinatorial Optimization. http://wwwmath.mit.edu/ goemans/18997-CO/co-lec18.ps

