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We describe two well known theorems in combinatorial optimization. We prove the theorems
using submodular flows later.

1 Graph Orientation

Definition 1 Let G = (V,E) be an undirected graph. For u, v ∈ V , we denote by λG(u, v) the edge-
connectivity between u and v in G, that is, the maximum number of edge-disjoint paths between u
and v. Similarly for a directed graph D = (V,A), λD(u, v) is the maximum number of arc-disjoint
paths from u to v.

Note that for an undirected graph G, λG(u, v) = λG(v, u) but it may not be the case that
λD(u, v) = λD(v, u) in a directed graph D.

Definition 2 G is k-edge-connected if λG(u, v) ≥ k ∀u, v ∈ V . Similarly, D is k-arc-connected if
λD(u, v) ≥ k ∀u, v ∈ V .

Proposition 1 G is k-edge-connected iff |δ(S)| ≥ k ∀S ⊂ V . D is k-arc-connected iff |δ+(S)| ≥ k
∀S ⊂ V .

Proof: By Menger’s theorem. 2

Definition 3 D = (V,A) is an orientation of G = (V,E) if D is obtained from G by orienting
each edge uv ∈ E as an arc (u, v) or (v, u).

Theorem 2 (Robbins 1939) G can be oriented to obtain a strongly-connected directed graph iff
G is 2-edge-connected.

Proof: “⇒” Suppose D = (V,A) is a strongly connected graph obtained as an orientation of
G = (V,E). Then, since ∀S ⊂ V , |δ+

D(S)| ≥ 1 and |δ−D(S)| ≥ 1, we have |δG(S)| ≥ 2. Therefore, G
is 2-edge-connected.

“⇐” Let G be a 2-edge-connected graph. Then G has an ear-decomposition. In other words, G
is either a cycle C or G is obtained from a 2-edge-connected graph G′ by adding an ear P (a path)
connecting two not-necessarily distinct vertices u, v ∈ V .
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Figure 1: G is either a cycle C or is G′ plus an ear P .

If G = C, orient it to obtain a directed cycle which is strongly-connected. Otherwise, inductively,
G′ has an orientation that is strongly-connected. Extend the orientation of G′ to G by orienting



P from u to v (or v to u). It is easy to check that this orientation results in strongly-connected
graph. 2

An alternative proof is as follows. Do a depth-first-search (DFS) of G starting at some node r.
One obtains a DFS tree T . Orient all edges of T away from r to obtain an arborescence. Every
other edge is a back-edge, that is if uv ∈ E(G)\E(T ), then, either u is the ancestor of v in T or v
is an ancestor of u in T . Orient uv from the descendant to the ancestor. We leave it as an exercise
to argue that this is a strongly-connected orientation of G iff G is 2-edge-connected. Note that this
is an easy linear time algorithm to obtain the orientation.
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Figure 2: Orientation of a 2-edge-connected graph via a DFS tree.

Nash-Williams proved the following non-trivial extension.

Theorem 3 (Nash-Williams) If G is 2k-edge-connected, then it has an orientation that is k-
arc-connected.

In fact, he proved the following deep result, of which the above is a corollary.

Theorem 4 (Nash-Williams) G has an orientation D in which λD(u, v) ≥ ⌊λG(u, v)/2⌋ for all
u, v ∈ V .

The proof of the above theorem is difficult - see [1]. We will prove the easier version using
submodular flows later.

2 Directed Cuts and Lucchesi-Younger Theorem

Definition 4 Let D = (V,A) be a directed graph. We say that C ⊂ A is a directed cut if ∃S ⊂ V
such that δ+(S) = ∅ and C = δ−(S).

If D has a directed cut then D is not strongly-connected.

Definition 5 A dijoin (also called a directed cut cover) in D = (V,A) is a set of arcs in A that
intersect each directed cut of D.

It is not difficult to see that the following are equivalent:

• B ⊆ A is a dijoin.
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Figure 3: A directed cut C = δ−(S).

• shrinking each arc in B results in a strongly-connected graph.

• adding all reverse arcs of B to D results in a strongly-connected graph.

Given B ⊆ A, it is therefore, easy to check if B is a dijoin; simply add the reverse arcs of B to
D and check if the resulting digraph is strongly connected or not.

Definition 6 A digraph D is weakly-connected if the underlying undirected graph is connected.

Theorem 5 (Lucchesi-Younger) Let D = (V,A) be a weakly-connected digraph. Then the min-
imum size of a dijoin is equal to the maximum number of disjoint directed cuts.

A dijoin intersects every directed cut so its size is at least the the maximum number of disjoint
directe cuts. The above theorem is yet another example of a min-max result. We will prove this
later using submodular flows. One can derive easily a weighted version of the theorem.

Corollary 6 Let D = (V,A) be a digraph with ℓ : A → Z+. Then the minimum length of a dijoin
is equal to the maximum number of directed cuts such that each arc a is in at most ℓ(a) of them
(in other words a maximum packing of directed cuts in ℓ).

Proof: If ℓ(a) = 0, contract it. Otherwise replace a by a path of length ℓ(a). Now apply the
Lucchesi-Younger theorem to the modified graph. 2

As one expects, a min-max result also leads to a polynomial time algorithm to compute a
minimum weight dijoin and a maximum packing of directed cuts.

Woodall conjectured the following, which is still open. Some special cases have been solved [1].

Conjecture 1 (Woodall) For every directed graph, the minimum size of a directed cut equals to
the maximum number of disjoint dijoins.

We describe an implication of Lucchesi-Younger theorem.

Definition 7 Given a directed graph D = (V,A), A′ ⊆ A is called a feedback arc set if D[A \ A′]
is acyclic, that is, A′ intersects each directed cycle of D.

Computing a minimum cardinality feedback arc set is NP-hard. Now suppose D is a plane
directed graph (i.e., a directed graph that is embedded in the plane). Then one defines its dual
graph D∗ as follows. For each arc (w, x) of D, we have a dual arc (y, z) ∈ D∗ that crosses (w, x)
from “left” to “right”. See example below.



Figure 4: A planar digraph and its dual.

Proposition 7 The directed cycles of D correspond to directed cuts in D∗ and vice versa.

Thus, a feedback arc set of D corresponds to a dijoin in D∗. Via Lucchesi-Younger theorem,
we have the following corollary.

Corollary 8 For a planar directed graph, the minimum size of a feedback arc set is equal to the
maximum number of arc-disjoint directed cycles.

Using the algorithm to compute a minimum weight dijoin, we can compute a minimum weight
feedback arc set of a planar digraph in polynomial time.

3 Polymatroid Intersection

Recall the definition of total dual integrality of a system of inequalities.

Definition 8 A rational system of inequalities Ax ≤ b is TDI if for all integral c, min{yb | y ≥
0, yA = c} is attained by an integral vector y∗ whenever the optimum exists and is finite.

Definition 9 A rational system of inequalities Ax ≤ b is box-TDI if the system d ≤ x ≤ c, Ax ≤ b
is TDI for each d, c ∈ Rn.

In particular, we have the following. If Ax ≤ b is box-TDI, then the polyhedron {x | Ax ≤
b, d ≤ ℓ ≤ u} is an integer polyhedron whenever b, ℓ, u are integer vectors.

Recall that if f : 2S → R is a submodular function, EPf is the extended polymatroid defined
as

{x ∈ RS |x(U) ≤ f(U), U ⊆ S}

We showed that the system of inequalities x(U) ≤ f(U), U ⊆ S is TDI. In fact, one can
show that the system is also box-TDI. Polymatroids generalize matroids. One can also consider
polymatroid intersection which generalizes matroid intersection.



Let f1, f2 be two submodular functions on S. Then the polyhedron EPf1
∩ EPf2

described by

x(U) ≤ f1(U) U ⊆ S

x(U) ≤ f2(U) U ⊆ S

is an integer polyhedron whenever f1 and f2 are integer valued. We sketch a proof of the following
theorem.

Theorem 9 (Edmonds) Let f1, f2 be two submodular set functions on the ground set S. The
system of inequalities

x(U) ≤ f1(U) U ⊆ S

x(U) ≤ f2(U) U ⊆ S

is box-TDI.

Proof: (Sketch) The proof is similar to that of matroid intersection. Consider primal-dual pair
below

maxwx

x(U) ≤ f1(U) U ⊆ S

x(U) ≤ f2(U) U ⊆ S

ℓ ≤ x ≤ u

min
∑

U⊆S(f1(U)y1(U) + f2(U)y2(U)) +
∑

a∈S u(a)z1(a) −
∑

a∈S ℓ(a)z2(a)
∑

a∈U (y1(U) + y2(U)) + z1(a) − z2(a) = w(a), a ∈ S

y ≥ 0, z1, z2 ≥ 0

Claim 10 There exists an optimal dual solution such that F1 = {U | y1(U) > 0} and F2 = {U |
y2(U) > 0} are chains.

The proof of the above claim is similar to that in matroid intersection. Consider F1 = {U |
y1(U) > 0}. If it is not a chain, there exist A,B ∈ F1 such that A 6⊂ B and B 6⊂ A. We change
y1 by adding ǫ to y1(A∪B) and y1(A∩B) and subtracting ǫ from y1(A) and y1(B). One observes
that the feasibility of the solution is maintained and that the objective function can only decrease
since f1 is submodular. Thus, we can uncross repeatedly to ensure that F1 is a chain, similarly F2.

Let y1, y2, z1, z2 be an optimal dual solution such that F1 and F2 are chains. Consider F = F1∪
F2 and the S×F incidence matrix M . As we saw earlier in the proof for matroid intersection, M is
TUM. We then have y1, y2, z1, z2 are determined by a system [ y1 y2 z1 z2 ][ M I −I ] = w,
where w is integer and M is TUM. Since [ M I −I ] is TUM, there exists integer optimum
solution. 2

Note that, one can separate over EPf1
∩EPf2

via submodular function minimization and hence
one can optimize EPf1

∩ EPf2
in polynomial time via the ellipsoid method. Strongly polynomial

time algorithm can also be derived. See [1] for details.



4 Submodularity on Restricted Families of Sets

So far we have seen submodular functions on a ground set S. That is f : 2S → R and ∀A,B ⊆ S,

f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B)

In several applications, one needs to work with restricted families of subsets. Given a finite set
S, a family of sets C ⊆ 2S is

• a lattice family if ∀A,B ∈ C, A ∩ B ∈ C and A ∪ B ∈ C.

• an intersecting family if ∀A,B ∈ C and A ∩ B 6= ∅, we have A ∩ B ∈ C and A ∪ B ∈ C.

• a crossing family if A,B ∈ C and A∩B 6= ∅ and A∪B 6= S, we have A∩B ∈ C and A∪B ∈ C.

For each of the above families, a function f is submodular on the family if

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B)

whenever A ∩ B, A ∪ B are guaranteed to be in family for A, B. Function f is called intersection
submodular and crossing submodular if C is intersecting and crossing family respectively.

We give some examples of interesting families that arise from directed graphs. Let D = (V,A)
be a directed graph.

Example 1 C = 2V \ {∅, V } is a crossing family.

Example 2 Fix s, t ∈ V , C = {U | s ∈ U, t /∈ U} is lattice, intersecting, and crossing family.

Example 3 C = {U ⊂ V | U induces a directed cut i.e. δ+(U) = ∅ and ∅ ⊂ U ⊂ V } is a crossing
family.

For the above example, we sketch the proof that C is a crossing family. If A,B ∈ C and A∩B 6= ∅
and A ∪ B 6= V , then by submodularity of δ+, |δ+(A ∪ B)| + |δ+(A ∩ B)| ≤ |δ+(A)| + |δ+(B)|.
Therefore we have δ+(A∪B) = ∅ and δ+(A∩B) = ∅ and more over A∩B and A∪B are non-empty.
Hence they both belong to C as desired.

Various polyhedra associates with submodular functions and the above special families are
known to be well-behaved.

For lattice families the system

x(U) ≤ f(U), U ∈ C

is box-TDI. Also, the following system is also box-TDI

x(U) ≤ f1(U), U ∈ C1

x(U) ≤ f2(U), U ∈ C2

where C1 and C2 are lattice families and f1 and f2 are submodular on C∞ and C2 respectively. The
above facts also hold for intersecting families and intersecting submodular functions.



For crossing family C, the system

x(U) ≤ f(U)

is not necessarily TDI. However, the system

x(U) ≤ f(U), U ∈ C

x(S) = k

where k ∈ R is box-TDI. Also, the system

x(U) ≤ f1(U), U ∈ C1

x(U) ≤ f2(U), U ∈ C2

x(S) = k

is box-TDI for crossing families C1 and C2 with f1 and f2 crossing supermodular on C1 and C2

respectively.

Although the polyhedra are well-behaved, the separation problem for them is not easy since
one needs to solve submodular function minimization over a restricted family C. It does not suffice
to have a value oracle for f on sets in C; one needs additional information on the representation of
C. We refer the reader to [1] for more details.
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